Answer:A
Step-by-step explanation:
A system is inconsistent when there are no solutions between the two equations. Graphically, the lines will be parallel (they never meet!) and the slopes will be the same. But the y-intercepts will be different.
Let's look at the four equations, with each solved as needed, into y = mx + b form.
A: 2x + y = 5
y = 5 - 2x
y = -2x + 5
Compared to y = 2x + 5, the slopes are different, so this system won't be inconsistent. Not a good choice.
B: y = 2x + 5
Compared to y = 2x + 5, the slopes are the same and the y intercepts are the same. This system has infinitely many solutions. Not a good choice.
C: 2x - 4y = 10
-4y = 10 - 2x
-4y = -2x + 10
y = 2/4x -10/4
Here the slopes are different, so, like A this is not a good choice.
D: 2y - 4x = -10
2y = =10 + 4x
2y = 4x - 10
y = 2x - 5
Compared to y = 2x + 5 we have the same slopes and different y intercepts. The lines will be parallel and the system is inconsistent.
Thus, D is the best choice.
Step-by-step explanation:
please subscribe my mom's channel those who subscribed my mom's channel
The final steps is to review your results.
This means that you have to check if the results meet the original requirements or statements.
Ideally, you should try to solve the same problem by a second method, and/or you should substitute the results into the given relationships given in the problem statement to chek coherence of your results.
Then the answer is option b.