A. electrons<span> and </span>neutrons<span> B. </span>electrons<span> and </span>protons<span> C. </span>protons<span> and </span>neutrons<span> D. all particles are attracted to each other. According to atomic theory, </span>electrons<span> are usually found: A. in the </span>atomic nucleus<span> B. outside the nucleus, yet very near it because they are attracted to the </span>protons<span>.</span>
Johann Strauss II
hope this helps
Answer:
1keff=1k1+1k2
see further explanation
Explanation:for clarification
Show that the effective force constant of a series combination is given by 1keff=1k1+1k2. (Hint: For a given force, the total distance stretched by the equivalent single spring is the sum of the distances stretched by the springs in combination. Also, each spring must exert the same force. Do you see why?
From Hooke's law , we know that the force exerted on an elastic object is directly proportional to the extension provided that the elastic limit is not exceeded.
Now the spring is in series combination
F
e
F=ke
k=f/e.........*
where k is the force constant or the constant of proportionality
k=f/e
............................1
also for effective force constant
divide all through by extension
1) Total force is
Ft=F1+F2
Ft=k1e1+k2e2
F = k(e1+e2) 2)
Since force on the 2 springs is the same, so
k1e1=k2e2
e1=F/k1 and e2=F/k2,
and e1+e2=F/keq
Substituting e1 and e2, you get
1/keq=1/k1+1/k2
Hint: For a given force, the total distance stretched by the equivalent single spring is the sum of the distances stretched by the springs in combination.
To solve this problem we will use the work theorem, for which we have that the Force applied on the object multiplied by the distance traveled by it, is equivalent to the total work. From the measurements obtained we have that the width and the top are 14ft and 7ft respectively. In turn, the bottom of the tank is 15ft. Although the weight of the liquid is not given we will assume this value of
(Whose variable will remain modifiable until the end of the equations subsequently presented to facilitate the change of this, in case be different). Now the general expression for the integral of work would be given as

Basically under this expression we are making it difficult for the weight of the liquid multiplied by the area (Top and widht) under the integral of the liquid path to be equivalent to the total work done, then replacing

![W = (14*7*62)\big [15y-\frac{y^2}{2}\big ]^{15}_0](https://tex.z-dn.net/?f=W%20%3D%20%2814%2A7%2A62%29%5Cbig%20%5B15y-%5Cfrac%7By%5E2%7D%7B2%7D%5Cbig%20%5D%5E%7B15%7D_0)
![W = (14*7*62)[15(15)-\frac{(15)^2}{2}]](https://tex.z-dn.net/?f=W%20%3D%20%2814%2A7%2A62%29%5B15%2815%29-%5Cfrac%7B%2815%29%5E2%7D%7B2%7D%5D)

Therefore the total work in the system is 