The answer is n= 6.
What is Balmer series?
The Balmer series is the portion of the emission spectrum of hydrogen that represents electron transitions from energy levels n > 2 to n = 2. These are four lines in the visible spectrum. They are also known as the Balmer lines. The four visible Balmer lines of hydrogen appear at 410 nm, 434 nm, 486 nm and 656 nm.
For the Balmer series, the final energy level is always n=2. So, the wavelengths 653.6, 486.1, 434.0, and 410.2 nm correspond to n=3, n=4, n=5, and n=6 respectively. Since the last wavelength, 410.2 nm, corresponds to n=6, the next wavelength should logically correspond to n=7.
To solve for the wavelength, calculate the individual energies, E2 and E7, using E=-hR/(n^2). Then, calculate the energy difference between E2 (which is the final) and E7 (which is the initial). Finally, use lamba=hc/E to get the wavelength.
To learn more about emission spectrum click on the link below:
brainly.com/question/24213957
#SPJ4
Answer:
Period of brightness variation and luminosity.
Explanation:
The Cepheid variables are used as distance indicators. This requires estimation of periods and (usually) intensity-mean magnitudes in order to establish a period—apparent luminosity relation. It is particularly important for the techniques employed to be as accurate and efficient as possible.
Answer:
<h2>The answer is 5 s</h2>
Explanation:
The time taken can be found by using the formula

d is the distance
v is the velocity
From the question we have

We have the final answer as
<h3>5 s</h3>
Hope this helps you
Answer:
F(Mars) = 2 G m M / (4 R)^2 force of Sun on Mars
F(Merc) = G m M / R^2 force of force of Sun on Mercury
R = distance of Sun from Mercury, m = mass of Mercury
F(Merc) / F(Mars) = 4^2 / 2 = 8