1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Sever21 [200]
3 years ago
10

Let an be the sum of the first n positive odd integers.

Mathematics
1 answer:
sesenic [268]3 years ago
5 0

Answer:

A) The first 4 terms of the sequences are: a_{1} =16, a_{2} =24, a_{3} =32 and a_{4} =40.

B) An explicit formula for this sequence can be written as: a_{n} =8*(n+1)

C) A recursive formula for this sequence can be written as:

\left \{ {{a_{1} =16} \atop {a_{n} =a_{n-1}+8}} \right.

Step-by-step explanation:

A) You can find the firs terms of this sequence simply selecting an odd integer and summing the consecutive 3 ones:

a_{n} = Odd_{n}+Odd_{n+1}+Odd_{n+2}+Odd_{n+3} (a.1)

a_{1}=1+3+5+7=16

a_{2}=3+5+7+9=24

a_{3}=5+7+9+11=32

a_{4}=7+9+11+13=40

B) Observe the sequence of odd numbers 1, 3, 5, 7, 9, 11, 13(...).

You can express this sequence as:

Odd_{n}=(2*n-1) (b.1)

If you merge the expression b.1 in a.1, you obtain the explicit formula of the sequence:

a_{n} = Odd_{n}+Odd_{n+1}+Odd_{n+2}+Odd_{n+3} (a.1)

a_{n} = (2*n-1)+((2*(n+1)-1))+((2*(n+2)-1))+((2*(n+3)-1)) (b.2)

a_{n} = 8*n+8 (b.3)

a_{n} =8*(n+1) (b.s)

C) The recursive formula has to be written considering an initial term and an N term linked with the previous term. You can see an addition of 8 between a term and the next one. So you can express each term as an addition of 8 with the previous one. Therefore, if the first term is 16:

\left \{ {{a_{1} =16} \atop {a_{n} =a_{n-1}+8}} \right. (c.s)

You might be interested in
Multiply the polynomials show steps
Karo-lina-s [1.5K]

Answer:

3a^{4} + 11a³ - 7a² + 18a - 18

Step-by-step explanation:

<u>When multiplying with two brackets, you need to multiply the three terms, (a²), (4a) and (-6) from the first bracket to all the terms in the second brackets, (3a²), (-a) and (3) individually. I have put each multiplied term in a bracket so it is easier.</u>

(a² + 4a - 6) × (3a² - a + 3) =

(a² × <em>3a²</em>) + {a² × <em>(-a)</em>} + (a² × <em>3</em>) + (4a × <em>3a²</em>) + {4a × <em>(-a)</em>} + (4a × <em>3</em>) + {(-6) × <em>a²</em>) + {(-6) × <em>(-a)</em>} + {(-6) × <em>3</em>}

<u>Now we can evaluate the terms in the brackets. </u>

(a² × 3a²) + {a² × (-a)} + (a² × 3) + (4a × 3a²) + {4a × (-a)} + (4a × 3) + {(-6) × a²) + {(-6) × (-a)} + {(-6) × 3} =

3a^{4} + (-a³) + 3a² + 12a³ + (-4a²) + 12a + (-6a²) + 6a + (-18)

<u>We can open the brackets now. One plus and one minus makes a minus. </u>

3a^{4} + (-a³) + 3a² + 12a³ + (-4a²) + 12a + (-6a²) + 6a + (-18) =

3a^{4} -a³ + 3a² + 12a³ -4a² + 12a -6a² + 6a -18

<u>Evaluate like terms.</u>

3a^{4} -a³ + 3a² + 12a³ -4a² + 12a -6a² + 6a -18 = 3a^{4} + 11a³ - 7a² + 18a - 18

5 0
3 years ago
Lesson 2-3
malfutka [58]

Answer:

18. g= -3

19. x= -1

20. n= 3

21. p= -1

22. d= -3

23. a= 5

Step-by-step explanation:

how to solve the variable (using 18 as an example)

step 1: simplify both sides of the equation.

20+g+g=14

(g+g)+(20)=14(combine like terms)

2g+20=14

2g+20=14

step 2: subtract 20 from both sides.

2g+20−20=14−20

2g=−6

step 3: divide both sides by 2.

2g/2 = -6/2

6 0
3 years ago
Simplify to create an equivalent expression <br> -4(-11 + 4n) -3(-2n + 9)
Marizza181 [45]

Answer:

-71 + 22n is the equivalent expression.

This is the simplified expression.

Step-by-step explanation:

4(-11 + 4n) -3(-2n + 9)

= -44 + 16n + 6n - 27

= -44 + 22n - 27

= -71 + 22n

7 0
3 years ago
Read 2 more answers
What is the nth term of 5,11,17,23
rewona [7]

Answer:

6n - 1.

Step-by-step explanation:

Arithmetic sequence.

a1 = 5, d = 6.

nth term = a1 + d(n - 1)

= 5 + 6(n - 1)

= 5 + 6n - 6

= 6n - 1.

7 0
3 years ago
Find the exact solution of the system of equations of x^2+y^2-4x-6y+4=0 and x^2-4x-3y+4=0
gavmur [86]
We can readily know the x^2-4x+4=3y then use it to replace the same function in the first equation which refers to the 3y+y^2-6y=0 
                                                              y^2-3y=0
                                                             y(y-3)=0
                                                               y1=0 -----------y2=3
7 0
3 years ago
Other questions:
  • 4. What is the sum of trigonometric ratios Cos 16 and Cos 74?
    6·1 answer
  • Which one describes the function?
    12·1 answer
  • Sinx•Tanx•Cotx•Cscx =
    9·1 answer
  • I need help with this math problem
    9·2 answers
  • Convert the angle O= 35° to radians.<br> Express your answer exactly.<br> radians
    10·1 answer
  • Could someone help me
    12·1 answer
  • Rearrange (∛7ab²)³ to have a rational exponent.
    13·1 answer
  • Original price $35;Markup:42%
    11·1 answer
  • 10.5125 rounded to the nearest cent plz help me ty &lt;3
    10·1 answer
  • Six times the sum of a number and 2 is -36
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!