Answer:
3
+ 11a³ - 7a² + 18a - 18
Step-by-step explanation:
<u>When multiplying with two brackets, you need to multiply the three terms, (a²), (4a) and (-6) from the first bracket to all the terms in the second brackets, (3a²), (-a) and (3) individually. I have put each multiplied term in a bracket so it is easier.</u>
(a² + 4a - 6) × (3a² - a + 3) =
(a² × <em>3a²</em>) + {a² × <em>(-a)</em>} + (a² × <em>3</em>) + (4a × <em>3a²</em>) + {4a × <em>(-a)</em>} + (4a × <em>3</em>) + {(-6) × <em>a²</em>) + {(-6) × <em>(-a)</em>} + {(-6) × <em>3</em>}
<u>Now we can evaluate the terms in the brackets. </u>
(a² × 3a²) + {a² × (-a)} + (a² × 3) + (4a × 3a²) + {4a × (-a)} + (4a × 3) + {(-6) × a²) + {(-6) × (-a)} + {(-6) × 3} =
3
+ (-a³) + 3a² + 12a³ + (-4a²) + 12a + (-6a²) + 6a + (-18)
<u>We can open the brackets now. One plus and one minus makes a minus. </u>
3
+ (-a³) + 3a² + 12a³ + (-4a²) + 12a + (-6a²) + 6a + (-18) =
3
-a³ + 3a² + 12a³ -4a² + 12a -6a² + 6a -18
<u>Evaluate like terms.</u>
3
-a³ + 3a² + 12a³ -4a² + 12a -6a² + 6a -18 = 3
+ 11a³ - 7a² + 18a - 18
Answer:
18. g= -3
19. x= -1
20. n= 3
21. p= -1
22. d= -3
23. a= 5
Step-by-step explanation:
how to solve the variable (using 18 as an example)
step 1: simplify both sides of the equation.
20+g+g=14
(g+g)+(20)=14(combine like terms)
2g+20=14
2g+20=14
step 2: subtract 20 from both sides.
2g+20−20=14−20
2g=−6
step 3: divide both sides by 2.
2g/2 = -6/2
Answer:
-71 + 22n is the equivalent expression.
This is the simplified expression.
Step-by-step explanation:
4(-11 + 4n) -3(-2n + 9)
= -44 + 16n + 6n - 27
= -44 + 22n - 27
= -71 + 22n
Answer:
6n - 1.
Step-by-step explanation:
Arithmetic sequence.
a1 = 5, d = 6.
nth term = a1 + d(n - 1)
= 5 + 6(n - 1)
= 5 + 6n - 6
= 6n - 1.
We can readily know the x^2-4x+4=3y then use it to replace the same function in the first equation which refers to the 3y+y^2-6y=0
y^2-3y=0
y(y-3)=0
y1=0 -----------y2=3