Answer:
(slow)xy2+z→xy2z (fast) c step1:step2:xy2+z2→xy2z2
Explanation:
Step1: xy2+z2→xy2z2 (slow)
Step2: xy2z2→xy2z+z (fast)
2XY 2 + Z 2 → 2XY 2 Z
Rate= k[xy2][z2]
When the two elementary steps are summed up, the result is equivalent to the stoichiometric equation. Hence, this mechanism is acceptable. The order of both elementary steps is 2, which is ‘≤3’; this also makes this mechanism acceptable. Furthermore, the rate equation aligns with the experimentally determined rate equation, and this also makes this mechanism acceptable. Therefore, since all the three rules have been observed, this mechanism is possible.
Answer:
Coating a material with metal
(SInce the glasses will be coated with gold.)
<u>Answer:</u> The equilibrium concentration of bromine gas is 0.00135 M
<u>Explanation:</u>
We are given:
Initial concentration of chlorine gas = 0.0300 M
Initial concentration of bromine monochlorine = 0.0200 M
For the given chemical equation:

<u>Initial:</u> 0.02 0.03
<u>At eqllm:</u> 0.02-2x x 0.03+x
The expression of
for above equation follows:
![K_c=\frac{[Br_2]\times [Cl_2]}{[BrCl]^2}](https://tex.z-dn.net/?f=K_c%3D%5Cfrac%7B%5BBr_2%5D%5Ctimes%20%5BCl_2%5D%7D%7B%5BBrCl%5D%5E2%7D)
We are given:

Putting values in above equation, we get:

Neglecting the value of x = -0.96 because, concentration cannot be negative
So, equilibrium concentration of bromine gas = x = 0.00135 M
Hence, the equilibrium concentration of bromine gas is 0.00135 M
126,720 inches are in 2.0 miles
Answer:
I'd answer, but I dont really know what it's talking about.
Explanation:
The process of making glass involves a chemical change. While a physical change describes change in the superficial properties of a substance-- like melting ice into water, or tearing up a piece of paper-- a chemical change alters the chemical makeup of the substance itself. Glass can undergo physical changes, too!