The answer is: the pressure inside a can of deodorant is 1.28 atm.
Gay-Lussac's Law: the pressure of a given amount of gas held at constant volume is directly proportional to the Kelvin temperature.
p₁/T₁ = p₂/T₂.
p₁ = 1.0 atm.; initial pressure
T₁ = 15°C = 288.15 K; initial temperature.
T₂ = 95°C = 368.15 K, final temperature
p₂ = ?; final presure.
1.0 atm/288.15 K = p₂/368.15 K.
1.0 atm · 368.15 K = 288.15 K · p₂.
p₂ = 368.15 atm·K ÷ 288.15 K.
p₂ = 1.28 atm.
As the temperature goes up, the pressure also goes up and vice-versa.
Answer: 4. A solution in which methyl orange is red
Explanation:
The others solutions are in their basic form while methyl orange is in it’s acidic form when red.
Answer:
A veinlike deposit, usually metalliferous.
Any body of ore set off from adjacent rock formations.
A rich supply or source
Answer:
Explanation:
Equilibrium is achieved in a chemical reaction when there is a steady state with no change in concentrations.
So the answer is "When the concentrations of reactants and products are constant."
Hello!
Based on these facts, we should classify Germanium as a Metalloid.
Metalloids are chemical elements with a mixture of properties from metals and non-metals. Although Germanium has a metallic appearance (typical of metals), it doesn't have the conductive properties of metals, but is a semiconductor. The semiconductive properties of Germanium are used in applications like transistors and chips.
Have a nice day!