Answer:
2.00 × 10⁻³ g
Explanation:
Step 1: Write the balanced decomposition reaction
2 NaHCO₃ ⇒ Na₂CO₃ + CO₂ + H₂O
Step 2: Calculate the moles corresponding to 0.0118 g of Na₂CO₃
The molar mass of Na₂CO₃ is 105.99 g/mol.
0.0118 g × 1 mol/105.99 g = 1.11 × 10⁻⁴ mol
Step 3: Calculate the moles of H₂O produced with 1.11 × 10⁻⁴ moles of Na₂CO₃
The molar ratio of Na₂CO₃ to H₂O is 1:1. The moles of H₂O produced are 1/1 × 1.11 × 10⁻⁴ mol = 1.11 × 10⁻⁴ mol.
Step 4: Calculate the mass corresponding to 1.11 × 10⁻⁴ moles of H₂O
The molar mass of H₂O is 18.02 g/mol.
1.11 × 10⁻⁴ mol × 18.02 g/mol = 2.00 × 10⁻³ g
Answer:
The elements of the same group have the same number of valence electrons, that is why they have similar properties
The answer is longitudinal waves
Answer:
Sulfur (S) is an element while the formula for this element is not just sulfur (e.g. H2S, SO2)
Explanation:
Explanation:
First, we need to calculate the number of moles of sodium carbonate we have in a 25 g sample. To calculate this, we will
find the molar mass of sodium carbonate (Na2CO3):
⇒ 2 × Molar mass of sodium + Molar mass of carbon + 3×molar mass of oxygen
⇒ 2 × 23 + 12 + 3 × 16
⇒ 46 + 12 + 48
⇒ 106g/mol
Thus, the molar mass of Na2CO3 is 106g/mol.
Therefore, number of moles = 25 ÷ 106
=> 0.2358 mol
Now, we know that every mole of Na2CO3 have 0.2358 moles of Na+ ions. Hence, total moles of Na2CO3 is 0.4716 moles
Number of ions present = 6.022 × 1023 × 0.4716 mol = 2.84 × 1023ions