For the given triangle, the value of x is 2,880.2 m.
Step-by-step explanation:
Step 1:
The sum of the angles on a straight line is 90°. It is given that the sum of the upper sides angle and 10° is 90°.
So the triangle has an angle of 80° on the top side.
Step 2:
For the top side, the hypotenuse measures x m and the adjacent side measures 500 m.
To determine the value of x, we determine the cos of the given angle.
![cos \theta = \frac{adjacentside}{hypotenuse} , cos 80 = 0.1736, cos 80 = \frac{500}{x}.](https://tex.z-dn.net/?f=cos%20%5Ctheta%20%3D%20%5Cfrac%7Badjacentside%7D%7Bhypotenuse%7D%20%2C%20cos%2080%20%3D%200.1736%2C%20cos%2080%20%3D%20%5Cfrac%7B500%7D%7Bx%7D.)
![x = (500)(0.1736) = 2,880.1843.](https://tex.z-dn.net/?f=x%20%3D%20%28500%29%280.1736%29%20%3D%202%2C880.1843.)
So rounding this off, we get the value of x is 2,880.2 m.