Answer:
Electronegativity
Explanation:
Element: <em>An element is a substance which can not be split into simpler units by an ordinary chemical process</em>
Electronegativity: This is the power of an atom in a molecule to attract electrons. The electronegativity of an element increase across the period in the periodic table and decreases down the group. The most electronegative elements are the reactive non metals.
Examples of electronnegative element include, Oxygen, Chlorine, Fluorine, Nitrogen, sulphur etc.
Answer:
v = 5.75 x 10⁶ m/s
Explanation:
The radius (r) of the circular orbit taken by a charged particle is related to its speed perpendicular to a magnetic field of strength B, and is given by
r =
--------------(i)
Where,
q = charge of the particle
m = mass of the particle
Making v subject of the formula in equation (i) above gives
v =
-------------------(ii)
Given;
r = 20cm = 0.2m
B = 0.3T
v = unknown
q = charge of proton = 1.6 x 10⁻¹⁹ C
m = mass of the proton = 1.67 x 10⁻²⁷kg
Substitute the values of m, q, B and r into equation (ii) above to get;
v = 
Solving for v gives:
v = 5.75 x 10⁶ m/s
Therefore, the velocity of the proton is 5.75 x 10⁶ m/s
Explanation:
It is given that,
The acceleration of a particle,
(negative as the particle is decelerating)
Initial distance, x₁ = 20 m
Initial time, t₁ = 4 s
New distance x₂ = 4 m
Velocity, v = 10 m/s
(A) Calculating initial distance using second equation of motion as :


u = 21 m/s
When velocity of the particle is zero, time taken is t (say). Using first equation of motion as :


t = 2.62 seconds
So, the velocity of the particle is zero at t = 2.62 seconds.
(B) Velocity at t = 11 s

v = 13 m/s
Total distance covered at t = 11 s. The overall path travelled by the particle during its entire journey is called total distance covered.


d = 132.48 m
So, the distance travelled by the particle at t = 11 seconds is 132.48 meters.
Answer:
Explanation:
With the help of expression of time period of pendulum we can calculate the height of the branch . The swinging tire can be considered equivalent to swinging bob of a pendulum . Here length of pendulum will be equal to height of branch .
Let it be h . Let the time period of swing of tire be T then from the formula of time period of pendulum
where l is length of pendulum .
here l = h so

If we calculate the time period of swing of tire , we can calculate the height of branch .
The time period of swing of tire can be estimated with the help of a stop watch . Time period is time that the tire will take in going from one extreme point to the other end and then coming back . We can easily estimate it with the help of stop watch .