Air resistance, also called drag, acts upon a falling body by slowing the body down to thr point where it stops accelerating, and it falls at a constant speed, known as the terminal volocity of a falling object. Air resistance depends on the cross sectional area of the object, which is why the effect of air resistance on a large flat surfaced object is much greater than on a small, streamlined object.
Speed with which initially car is moving is 21 m/s
Reaction time = 0.50 s
distance traveled in the reaction time d = v t
d = 21 * 0.50 = 10.5 m
deceleration after this time = -10 m/s^2
now the distance traveled by the car after applying bakes



so total distance moved before it stop
d = 22.05 + 10.5 = 32.55 m
so the distance from deer is 35 - 32.55 = 2.45 m
now to find the maximum speed with we can move we will assume that we will just touch the deer when we stop
so our distance after brakes are applied is d = 35 - 10.5 = 24.5 m
again by kinematics



so maximum speed would be 22.1 m/s
Answer:
246.28 K
Explanation:
The total energy of one mole of gas molecules can be calculated by the formula given below
E = 
Where R is gas constant and T is absolute temperature.
Put the value of R as 8.314 and temperature as 245 , we get
E = 
= 3055.4 J
Add 16 j to it
Total energy of gas molecules = 3055.4 + 16 = 3071.4 J.
If T be the temperature after addition of energy then
= 3071.4
T =
T = 246.28 K
Answer:
3.5m/s^2
Explanation:
From Newton's second Law of Motion
F = ma
Where F is the applied force, m is the mass of the object and a is the acceleration.
F = 350 N
Mass = 100kg
350N = 100×a
a = 350/100
a = 3.5m/s^2
The acceleration of the object will be 3.5m/s^2