Answer is: <span>the pressure of the gas is 9,2 atm.
</span>p₁ = 4,0 atm.
T₁ = 300 K.
V₁ = 5,5 L.
p₂ = ?
T₂ = 250 K.
V₂ = 2,0 L.
Use combined gas law - the volume of amount of gas is proportional to the ratio of its Kelvin temperature and its pressure.<span>
</span>p₁V₁/T₁ = p₂V₂/T₂.
4 atm · 5,5 L ÷ 300 K = p₂ · 2,0 L ÷ 250 K.
0,0733 = 0,008p₂.
p₂ = 9,2 atm.
Answer:
12 %
Explanation:
Produces 15 J of work for input 125 J
15/125 * 100% = 12%
Answer:CO2(g) will be formed at a faster rate in experiment 2 because more H+ particles can react per unit time
Explanation:
Answer is: concentration of hydrogen iodide is 6 M.
Balanced chemical reaction: H₂(g) + I₂(g) ⇄ 2HI(g).
[H₂] = 0.04 M; equilibrium concentration of hydrogen.
[I₂] = 0.009 M; equilibrium concentration of iodine.
Keq = 1·10⁵.
Keq = [HI]² / [H₂]·[I₂].
[HI]² = [H₂]·[I₂]·Keq.
[HI]² = 0.04 M · 0.009 M · 1·10⁵.
[HI]² = 36 M².
[HI] = √36 M².
[HI] = 6 M.
Answer is: density of the substance, energy of the substance, intermolecular bonds between particles.
Melting is a physical change (process), the same substance is present before and after the change, so chemical bonds and melting point of the substance are not changed.
Density of liquids are usually less than in solids, because atoms are further apart.
Liquids have higher energy and atoms or molecules move faster.
Intermolecular bonds are weaker in liquids.