Answer:
Cells are the basic structural unit of all living organisms.
Explanation:
Hope this helps, but i'm unsure if it would be multiple choice or not.
Al(NO3)3 + 3KOH -------> 3KNO3 + Al(OH)3
50 ml * .2 moles/ liter = .01 Moles of Al(NO3)3
200 ml * .1 moles/liter = .02 Moles of KOH
Since the ratio between the two reactants according to the chemical equation is 1:3, we would need .03 moles of one to fully react with .01 moles of the other. Since we don't, only 1/150 mole of the first reactant will react with the .02 moles of the second reactant. This will produce .02 moles of KNO3 as well as .01 moles of Al(OH)3
.02 moles KNO3 = .02(48 grams + 14 grams + 40 grams) = .02(102 grams) = 2.04 grams
I think it’s D hope that helped
The correct unabbreviated electron configuration is as below
Vanadium - 1S2 2S2 2P6 3S2 3p6 3d3 4s2
Strontium - 1s2 2S2 2P6 3S2 3P6 3d10 4S2 4P6 4S2
Carbon =1S2 2S2 2P2
<u><em> Explanation</em></u>
vanadium is in atomic number 23 in the periodic table hence its electron configuration is 1s2 2s2 2p6 3s2 3p6 3d3 4s2
Strontium is in atomic number 38 in periodic table hence its electron configuration is 1s2 2s2 2p6 3s2 3p6 3d10 4s2 4p6 4s2
Carbon is in atomic number 6 in periodic table therefore its electron configuration is 1s2 2s2 2p2
Answer:
5) donating H to a solution when they have been depleted and accepting H when they are in excess.
Explanation:
A buffer solution is a solution that undergoes a negligible change in pH in addition of moderate quantities of acid or alkali. In other words, a buffer solution is one that resists a change in pH on addition or dilution of small amounts of acids or alkalis.
So, from the given question:
Buffers are substances that help resist shifts in pH by donating H to a solution when they have been depleted and accepting H when they are in excess.