Answer:
If a Gaussian surface is completely inside an electrostatic conductor, the electric field must always be zero at all points on that surface.
Explanation:
Option A is incorrect because, given this case, it is easier to calculate the field.
Option B is incorrect because, in a situation where the surface is placed inside a uniform field, option B is violated
Option C is also incorrect because it is possible to be a field from outside charges, but there will be an absence of net flux through the surface from these.
Hence, option D is the correct answer. "If a Gaussian surface is completely inside an electrostatic conductor, the electric field must always be zero at all points on that surface."
Answer:
Increases
Explanation:
The expression for the capacitance is as follows as;

Here, C is the capacitance,
is the permittivity of free space, A is the area and d is the distance between the parallel plate capacitor.
It can be concluded from the above expression, the capacitance is inversely proportional to the distance. According to the given problem, the capacitor is disconnected from the battery and the distance between the plates is increased. Then, the capacitance of the given capacitor will decrease in this case.
The expression for the energy stored in the parallel plate capacitor is as follows;

Here, E is the energy stored in the capacitor, C is the capacitance and Q is the charge.
Energy stored in the given capacitor is inversely proportional to the capacitor. The charge on the capacitor is constant. In the given problem, as the distance between the parallel plates is being separated, the energy stored in this capacitor increases.
Therefore, the option (c) is correct.
Answer:
1.69 T
Explanation:
Applying,
F = BvqsinФ.................. Equation 1
Where F = Force, B = magnetic field, v = velocity, q = charge on an electron, Ф = angle between the electron and the field.
make B the subject of the equation,
B = F/(vqsinФ)............. Equation 2
From the question,
Given: F = 2.0×10⁻¹³ N, v = 7.4×10⁵ m/s, Ф = 90°
Constant: q = 1.60×10⁻¹⁹ C
Substitute into equation 2
B = 2.0×10⁻¹³/(7.4×10⁵×1.60×10⁻¹⁹×sin90°)
B = 0.169×10
B = 1.69 T
Answer:
Yes
Explanation:
Testing electricity is a good conductor of electricity.
Well the diagram would look like the water cycle I think