The range of potential energies of the wire-field system for different orientations of the circle are -
θ U
0° 375 π x 
90° 0
180° - 375 π x 
We have current carrying wire in a form of a circle placed in a uniform magnetic field.
We have to the range of potential energies of the wire-field system for different orientations of the circle.
<h3>What is the formula to calculate the Magnetic Potential Energy?</h3>
The formula to calculate the magnetic potential energy is -
U = M.B = MB cos 
where -
M is the Dipole Moment.
B is the Magnetic Field Intensity.
According to the question, we have -
U = M.B = MB cos 
We can write M = IA (I is current and A is cross sectional Area)
U = IAB cos 
U = Iπ
B cos 
For
= 0° →
U(Max) = MB cos(0) = MB = Iπ
B = 5 × π ×
× 3 ×
=
375 π x
.
For
= 90° →
U = MB cos (90) = 0
For
= 180° →
U(Min) = MB cos(0) = - MB = - Iπ
B = - 5 × π ×
× 3 ×
=
- 375 π x
.
Hence, the range of potential energies of the wire-field system for different orientations of the circle are -
θ U
0° 375 π x 
90° 0
180° - 375 π x 
To solve more questions on Magnetic potential energy, visit the link below-
brainly.com/question/13708277
#SPJ4
Multiplying the power of any signal by 5 can be described as
an increase of 6.99 dB .
If the whistle blew at 70 dB initially, and its sound power became
multiplied by 5, and the whistle and the listener both stayed in
the same places, then the listener would tell you that the whistle
was now blowing at 76.99 dB .
(More likely, he would report "77 dB" as he held his ears and winced.)
Answer:
He traveled 9km
Explanation:
To do this problem you need to use the equation which is Speed= distance/time and this problem gives you the speed which is 18 km/h and it gives you the time 1/2 hour so you write the equation 18= d/ 1/2 which his distance is 9km
Well you have to think of it like electricity go through your answer closes to that and figure it out
I believe the answer here is <span>C).seedless, seed (nonflowering), and seed (flowering).</span><span>
</span>