Answer:
This is easy -- it's just a list of steps. At this level, the problems are pretty simple.
Let's just do one, then I'll write out the list of steps for you.
Find the inverse of f( x ) = -( 1 / 3 )x + 1
STEP 1: Stick a "y" in for the "f(x)" guy:
y = -( 1 / 3 )x + 1
STEP 2: Switch the x and y
( because every (x, y) has a (y, x) partner! ):
x = -( 1 / 3 )y + 1
STEP 3: Solve for y:
x = -( 1 / 3 )y + 1 ... multiply by 3 to ditch the fraction ... 3x = -y + 3 ... ditch the +3 ... subtract 3 from both sides ... 3x - 3 = -y ... multiply by -1 ... -3x + 3 = y ... y = -3x + 3
STEP 4: Stick in the inverse notation, f^( -1 )( x )
f^( -1 )( x ) = -3x + 3
Step-by-step explanation:
Answer:
<h3>The value C(t) of the car after 5 years is $12709.</h3>
Step-by-step explanation:
Given that Landon bought a new car for $16,000 and it depreciates 4.5% every year.
<h3>To find the value C(t) of the car after 5 years:</h3>
Initial value 
Depreciation rate is 
<h3>∴ r=0.045</h3>
Period , t=5 years

Substitute the values we get



∴ 
<h3>The value C(t) of the car after 5 years is $
12709</h3>
This is just here for the 20 character limit but the answer is in the picture.
First of all, you need to come to an understanding of what you mean by "compare that score to the population." Often, that will mean determining the percentile rank of the score.
To determine the percentile rank of a raw score, you first nomalize it by determining the number of standard deviations it lies from the mean. That is, you subtract the population mean and divide that difference by the population standard deviation. Now, you have what is referred to as a "z-score".
Using a table of standard normal probability functions (or an equivalent calculator or app), you look up the cumulative distribution value corresponding to the z-score you have. This number between 0 and 1 (0% and 100%) will be the percentile rank of the score, the fraction of the population that has raw scores below the raw score you started with.