Answer:
The density of this liquid is 0.320 kg/L
Explanation:
Given:
Volume of the Liquid = 0.820 L
Mass of the liquid = 2.56 kg.
To Find:
The density of the liquid in kg/L
Solution:
Density is the mass occupied by the substance in unit volume. This density is essential determining whether the substance floats or sinks. Greek letter(rho) is used to denote density
The equation of for density is


where m is the mass
v is the volume
On substituting the given values


Recall that a mole is defined as Avogadros number of particles.
What the formula of caffeine basically tells us is that for every molecule of caffeine, you will have 4 atoms of nitrogen
So, if we have 0.3 moles of caffeine we will have 4*0.3 moles of nitrogen which is 0.12.
And you got the idea
Cheers
Answer:
b. 186 g
Explanation:
Step 1: Write the balanced equation.
4 NH₃(g) + 6 NO(g) → 5 N₂(g) + 6 H₂O(l)
Step 2: Calculate the moles corresponding to 145 g of N₂
The molar mass of nitrogen is 28.01 g/mol.

Step 3: Calculate the moles of NO required to produce 5.18 moles of N₂
The molar ratio of NO to N₂ is 6:5.

Step 4: Calculate the mass corresponding to 6.22 moles of NO
The molar mass of NO is 30.01 g/mol.

They have a magnetic attraction.
Answer:
the pressure at c = 0.27 atm
Explanation:
Given that:
number of moles (n) = 1.0 moles
Value of gamma in the monoatomic gas (γ) = 5/3
During an isothermal expansion, the volume at b is = 2.5 times the volume at a ; this implies that:

∴ To calculate the pressure at c from a; the process is adiabatic compression; so we apply:

![\frac{P_c}{P_a}=[\frac{V_a}{V_c}]^{(2/3)](https://tex.z-dn.net/?f=%5Cfrac%7BP_c%7D%7BP_a%7D%3D%5B%5Cfrac%7BV_a%7D%7BV_c%7D%5D%5E%7B%282%2F3%29)
![\frac{P_c}{1.0 atm}=[\frac{1}{2.5}]^{(2/3)](https://tex.z-dn.net/?f=%5Cfrac%7BP_c%7D%7B1.0%20atm%7D%3D%5B%5Cfrac%7B1%7D%7B2.5%7D%5D%5E%7B%282%2F3%29)

Thus, the pressure at c = 0.27 atm