Answer: Option (B) is the correct answer.
Explanation:
When a fatty acid contains high number of double bonds then its unsaturation will also be high and hence, it will consume greater number of equivalents of hydrogen.
In corn oil, there are no unsaturated sites are present.
In olive oil, there is one unsaturated site with majority of oleic acid. In olive oil, there are more than 70% of total unsaturated oils.
In lard oil, there are around 60% of unsaturated oils.
In herring oil, there are highest number of saturated fatty acids and lowest polyunsaturated acids.
Thus, we can conclude that out of the given options, olive oils would consume the greatest number of equivalents of hydrogen when subject to catalytic hydrogenation.
1 mole of any gas under STP has volume 22.4 L
So 2.50 moles of any gas ( including oxygen)
2.50 mol *(22.4L/1 mol)=56.0 L
Answer:
0.41 moles.
Explanation:
Given that:
Mass of helium = 4.00 g
Initial Volume = 24.4 L
initial Temperature = 25.0 °C =( 25 + 273) = 298 K
initial Pressure = 1.00 atm
The volume was reduced to :
i.e
final volume of the helium - 10.4 L
Change in ΔV = 24.4 - 10.4 = 10.0 L
Temperature and pressure remains constant.
The new quantity of gas can be calculated by using the ideal gas equation.
PV = nRT
n = 
n = 
n = 0.4089 moles
n = 0.41 moles.