Answer:
x = 52, A.
Step-by-step explanation:
The two angles across from each other are both acute angles, which means that considering their positioning, they're gonna equal the same in degrees. If the question were asking to find the value of x on one of the obtuse angles, your answer would be B, considering both of those lines would equal 180 degrees.
Hope that helps!
Answer:
C
Step-by-step explanation:
The volume of the regular pyramid is 
The base of given pyramid is regular hexagon with side 12 cm. The are of this hexagon consistsof area of 6 equilateral triangles and is equal to

Hence, the volume of the pyramid is

Answer:
205÷5=41
Step-by-step explanation:
I know its right
<u>Complete Question:</u>
Janeel has a 10 inch by 12 inch photograph. She wants to scan the photograph, then reduce the results by the same amount in each dimension to post on her Web site. Janeel wants the area of the image to be one eight of the original photograph. Write an equation to represent the area of the reduced image. Find the dimensions of the reduced image.
<u>Correct Answer:</u>
A) 
B) Dimensions are : Length = 10-x = 3 inch , Breadth = 12-x = 5 inch
<u>Step-by-step explanation:</u>
a. Write an equation to represent the area of the reduced image.
Let the reduced dimensions is by x , So the new dimensions are

According to question , Area of new image is :
⇒ 
⇒ 
⇒ 
So the equation will be :
⇒ 
b. Find the dimensions of the reduced image
Let's solve : 
⇒ 
⇒ 
⇒ 
By Quadratic formula :
⇒ 
⇒ 
⇒ 
⇒
x = 15 is rejected ! as 15 > 10 ! Side can't be negative
⇒ 
Therefore, Dimensions are : Length = 10-x = 3 inch , Breadth = 12-x = 5 inch
Answer:
23rd term of the arithmetic sequence is 118.
Step-by-step explanation:
In this question we have been given first term a1 = 8 and 9th term a9 = 48
we have to find the 23rd term of this arithmetic sequence.
Since in an arithmetic sequence

here a = first term
n = number of term
d = common difference
since 9th term a9 = 48
48 = 8 + (9-1)d
8d = 48 - 8 = 40
d = 40/8 = 5
Now 
= 8 + (23 -1)5 = 8 + 22×5 = 8 + 110 = 118
Therefore 23rd term of the sequence is 118.