Answer:
The angle formed between CF and the plane ABCD is approximately 47.14°
Step-by-step explanation:
The given parameters are;
BC = 6.8
DE = 9.3
∠BAC = 52°
We note that the angles formed by the vertex of a cuboid are right triangles, therefore, by trigonometric ratios, we get;
sin∠BAC = BC/(The length of a line drawn from A to C)
∴ The length of the line drawn from A to C = BC/sin∠BAC
The length of the line drawn from A to C = 6.8/sin(52°) ≈ 8.63
∴ AC = 8.63
By trigonometry, we have;
The angle formed between CF and the plane ABCD = Angle ∠ACF


In a cuboid, FA = BG = CH = DE = 9.3


The angle formed between CF and the plane ABCD = Angle ∠ACF ≈ 47.14°
Answer:
here you go , all four completed, took me some time , hipe i was able to help you out tho
57 at 7.oo dollars is 399 so he bought 1 more at 1 dollar
Answer:
15
Step-by-step explanation:
x/3 + 3 = 8
x/3 + 9/3 = 8
x + 9 = 24
x = 15
Answer:
The given line segment has a midpoint at (−1, −2).
On a coordinate plane, a line goes through (negative 5, negative 3), (negative 1, negative 2), and (3, negative 1).
What is the equation, in slope-intercept form, of the perpendicular bisector of the given line segment?
y = −4x − 4
y = −4x − 6
y = One-fourthx – 4
y = One-fourthx – 6
y = Three-halvesx + 1