1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Gnom [1K]
3 years ago
13

Water enters a student's house 10.0 m above the ground through a pipe with a cross section area of 1.00 x 10-4m2 at ground. Insi

de the house the pipe's cross section area is 0.50 x 10-4m2. The student in the house want to know the water pressure inside the pipe at the ground level. He first measured the volume of the bath tank that equals to 45.0 L. Then he fill the tank (the tank is 10 meters above the ground) inside the house with 90.0 seconds. The pipe inside the house is open with the sea level pressure The density of water is 1000 kgm3.
(a) Calculate the water speed at the ground pipe with larger cross section area and the water speed inside the house with smaller cross section area.
(b) Calculate the water pressure in the pipeline at the ground level.
Physics
1 answer:
dezoksy [38]3 years ago
3 0

Answer:

(a). V₁ = 10m/s (velocity inside the house), V₂ = 5m/s (velocity at ground level)

(b). P₂ = 236500 Pa

Explanation:

This is quite straight-forward so let us begin by defining the terms given.

Given that;

The cross-section area inside the student's house A₁ = 0.50 0.50 x 10-4m2.

Let us make the velocity of water inside the house be V₁

such that the Volume of water entering the per second is = A₁V₁

Therefore, in 90sec:

45 L =  90 A₁V₁

V₁ = 45 * 10⁻³m³ / 90*0.5*10⁻⁴

V₁ = 10m/s            (velocity of water inside the house)

From the continuity equation we have that;

A₁V₁ = A₂V₂

0.5*10⁻⁴ * 10 = 1*10⁻⁴ V₂

V₂ = 5m/s               (velocity at ground level)

(b). We are told to calculate the water pressure in the pipeline at the ground level.

Using Bernoulli's equation;

P₁ + pgh₁ + 1/2PV₁²  (inside)      =       P₂ + pgh₂ + 1/2PV₂²   (ground level)

1.01*10⁵ + 1000*9.8*10 + 1/2*1000*(10)² = P₂ + 0 + 1/2*1000*(5)²

P₂ (pressure) = 1.01*10⁵Pa

Therefore we have;

101000 + 98000 + 50000 = P₂ + 12500

P₂ = 236500 Pa

cheers I hope this helped !!

You might be interested in
Elevator mass 750kg tension on cable 8950n what is the net force action on the elevator
Hunter-Best [27]
The answer to this question i think would be 8950. Do you have any answer choices.
8 0
4 years ago
A block of unknown mass is attached to a spring with a spring constant of 7.00 N/m 2 and undergoes simple harmonic motion with a
KatRina [158]

Answers:

a) 0.80 kg

b) 2.12 s

c) 1.093 m/s^{2}

Explanation:

We have the following data:

k=7 N/m is the spring constant

A=12.5 cm \frac{1 m}{100 cm}=0.125 m is the amplitude of oscillation

V=32 cm/s=0.32 m/s is the velocity of the block when x=\frac{A}{2}=0.0625 m

Now let's begin with the answers:

<h3>a) Mass of the block</h3>

We can solve this by the conservation of energy principle:

U_{o}+K_{o}=U_{f}+K_{f} (1)

Where:

U_{o}=k\frac{A^{2}}{2} is the initial potential energy

K_{o}=0  is the initial kinetic energy

U_{f}=k\frac{x^{2}}{2} is the final potential energy

K_{f}=\frac{1}{2} m V^{2} is the final kinetic energy

Then:

k\frac{A^{2}}{2}=k\frac{x^{2}}{2}+\frac{1}{2} m V^{2} (2)

Isolating m:

m=\frac{k(A^{2}-x^{2})}{V^{2}} (3)

m=\frac{7 N/m((0.125 m)^{2}-(0.0625 m)^{2})}{(0.32 m/s)^{2}} (4)

m=0.80 kg (5)

<h3>b) Period</h3>

The period T is given by:

T=2 \pi \sqrt{\frac{m}{k}} (6)

Substituting (5) in (6):

T=2 \pi \sqrt{\frac{0.80 kg}{7 N/m}} (7)

T=2.12 s (8)

<h3>c) Maximum acceleration</h3>

The maximum acceleration a_{max} is when the force is maximum F_{max}, as well :

F_{max}=m.a_{max}=k.x_{max} (9)

Being x_{max}=A

Hence:

m.a_{max}=kA (10)

Finding a_{max}:

a_{max}=\frac{kA}{m} (11)

a_{max}=\frac{(7 N/m)(0.125 m)}{0.80 kg} (12)

Finally:

a_{max}=1.093 m/s^{2}

5 0
3 years ago
Your physics textbook is sliding to the right across the table draw the vectors starting at the black dot. the location and orie
liberstina [14]
You would take a black dot at the top right of the y axis and dray it to the the far right of your x axis. hope this helps have a nice day and God bless
6 0
3 years ago
How small are the wavelengths of gamma ray radiation?
WARRIOR [948]

Gamma rays are the highest energy EM radiation and typically have energies greater than 100 keV, frequencies greater than 1019 Hz, and wavelengths less than 10 picometers.

3 0
4 years ago
PLEASE HELP ASAP
Kisachek [45]

Answer:

has more energy, has a greater amplitude, has a higher frequency

Explanation:

7 0
3 years ago
Read 2 more answers
Other questions:
  • A small model of a pump is tested in the laboratory and found to have a specific speed, nsd, equal to 1000 when operating at pea
    14·1 answer
  • A baseball with mass 0.145 kg is moving in the+y direction with a speed of 2.10m/s, and a tennis ball with mass 0.0570 kg is mov
    8·1 answer
  • Absorbed energy is said to be quantized. This means:____________ a) Energy is absorbed only by valence electrons. b) Energy caus
    11·1 answer
  • If element x has 94 protons how many electrons does it have​
    13·2 answers
  • Research four illnesses that afflict humans. Each illness should be caused by a pathogenic organism of a different type:
    12·1 answer
  • A stone with a mass of 0.70 kg is attached to one end of a string 0.70 m long. The string will break if its tension exceeds 65.0
    5·1 answer
  • 1. The first thing to do in the event of brake failure is to a. use the parking brake to stop your carb. pump the brake pedal ra
    12·1 answer
  • Different satellites orbit the earth with a vast range of altitudes, from just a couple hundred km, all the way to tens of thous
    7·1 answer
  • A car starts with an initial speed of 12 m/s and accelerates at 3 m/s/s for 5 seconds
    15·1 answer
  • Identify a form of potential energy.
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!