1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Gnom [1K]
3 years ago
13

Water enters a student's house 10.0 m above the ground through a pipe with a cross section area of 1.00 x 10-4m2 at ground. Insi

de the house the pipe's cross section area is 0.50 x 10-4m2. The student in the house want to know the water pressure inside the pipe at the ground level. He first measured the volume of the bath tank that equals to 45.0 L. Then he fill the tank (the tank is 10 meters above the ground) inside the house with 90.0 seconds. The pipe inside the house is open with the sea level pressure The density of water is 1000 kgm3.
(a) Calculate the water speed at the ground pipe with larger cross section area and the water speed inside the house with smaller cross section area.
(b) Calculate the water pressure in the pipeline at the ground level.
Physics
1 answer:
dezoksy [38]3 years ago
3 0

Answer:

(a). V₁ = 10m/s (velocity inside the house), V₂ = 5m/s (velocity at ground level)

(b). P₂ = 236500 Pa

Explanation:

This is quite straight-forward so let us begin by defining the terms given.

Given that;

The cross-section area inside the student's house A₁ = 0.50 0.50 x 10-4m2.

Let us make the velocity of water inside the house be V₁

such that the Volume of water entering the per second is = A₁V₁

Therefore, in 90sec:

45 L =  90 A₁V₁

V₁ = 45 * 10⁻³m³ / 90*0.5*10⁻⁴

V₁ = 10m/s            (velocity of water inside the house)

From the continuity equation we have that;

A₁V₁ = A₂V₂

0.5*10⁻⁴ * 10 = 1*10⁻⁴ V₂

V₂ = 5m/s               (velocity at ground level)

(b). We are told to calculate the water pressure in the pipeline at the ground level.

Using Bernoulli's equation;

P₁ + pgh₁ + 1/2PV₁²  (inside)      =       P₂ + pgh₂ + 1/2PV₂²   (ground level)

1.01*10⁵ + 1000*9.8*10 + 1/2*1000*(10)² = P₂ + 0 + 1/2*1000*(5)²

P₂ (pressure) = 1.01*10⁵Pa

Therefore we have;

101000 + 98000 + 50000 = P₂ + 12500

P₂ = 236500 Pa

cheers I hope this helped !!

You might be interested in
If a transmission line in a cold climate collects ice, the increased diameter tends to cause vortex formation in a passing wind.
AleksAgata [21]

Answer:

a) f_1=5.587Hz

b) f_{n+1}-f_n=5.587Hz

Explanation:

The frequency of the n^{th} harmonic of a vibrating string of length <em>L, </em>linear density \mu under a tension <em>T</em> is given by the formula:

f_n=\frac{n}{2L} \sqrt{\frac{T}{\mu}

a) So for the <em>fundamental mode</em> (n=1) we have, substituting our values:

f_1=\frac{1}{2(347m)} \sqrt{\frac{65.4\times10^6N}{4.35kg/m}}=5.587Hz

b) The <em>frequency difference</em> between successive modes is the fundamental frequency, since:

f_{n+1}-f_n=\frac{n+1}{2L} \sqrt{\frac{T}{\mu}}-\frac{n}{2L} \sqrt{\frac{T}{\mu}}=(n+1-n)\frac{1}{2L} \sqrt{\frac{T}{\mu}}=\frac{n}{2L} \sqrt{\frac{T}{\mu}}=f_1=5.587Hz

3 0
3 years ago
If a longitudinal wave passes a specific point seven times per second, and the distance between wave rarefaction points is 2 met
zavuch27 [327]

Answer: 14 m/s

Explanation:

The speed S of a sound wave is given by the following equation:

S=\lambda f

Where:

\lambda=2 m is the wavelength of the sound wave

f=7 times/s=7 Hz

S=(2 m)(7 Hz)

Hence:

S=14 m/s

4 0
3 years ago
You are on a train traveling east at speed of 18 m/s with respect to the ground. 1) If you walk east toward the front of the tra
dlinn [17]

Answer:

19.2 m/s

Explanation:

The train is moving at 18 m/s and you are walking in the same direction (east) so the speeds are added

18 + 1.2 = 19.2

If you were walking backwards (west) your velocity with respect to the ground would be

18 - 1.2 = 16.8

8 0
3 years ago
If the momentum of an object is doubled then kinetic energy is ...?​
stiks02 [169]

Answer:

increased with the same rate as momentum

7 0
3 years ago
A 4.10 g bullet moving at 837 m/s strikes a 820 g wooden block at rest on a frictionless surface. The bullet emerges, traveling
atroni [7]

Answer:

(a) 1.85 m/s

(b) 4.1 m/s

Explanation:

Data

  • bullet mass, Mb = 4.10 g
  • initial bullet velocity, Vbi = 837 m/s
  • wooden block mass, Mw = 820 g
  • initial wooden block  velocity, Vwi = 0 m/s
  • final bullet velocity, Vbf = 467 m/s

(a) From the conservation of momentum:

Mb*Vbi + Mw*Vwi = Mb*Vbf + Mw*Vwf

Mb*(Vbi - Vbf)/Mw = Vwf

4.1*(837 - 467)/820 = Vwf

Vwf = 1.85 m/s

(b) The speed of the center of mass speed is calculated as follows:

V = Mb/(Mb + Mw) * Vbi

V = 4.1/(4.1 + 820) * 837

V = 4.1 m/s

6 0
3 years ago
Other questions:
  • The earth has a vertical electric field at the surface, pointing down, that averages 100 N/C. This field is maintained by variou
    15·1 answer
  • Really need help with this Physics question!
    5·1 answer
  • Air flows upward in the wick of a lantern because of the liquid property called
    14·1 answer
  • A LOT OF POINTS! In your own words, compare and contrast transverse and longitudinal waves. Be sure to include at least one simi
    14·1 answer
  • A teacher gives students four liquids commonly found in the kitchen - vinegar, apple juice, dish detergent, and milk - and pH in
    12·2 answers
  • Calculate the acceleration of an object slowing from 9.8 m/s to 6.4 m/s over the course of 17s
    11·1 answer
  • Choose the following types of hazards below
    9·2 answers
  • Which feature of a balanced chemical equation demonstrates the law of conservation of mass?​
    14·1 answer
  • What do ethical guidelines for research with human subjects mean?
    6·1 answer
  • By what percent does the braking distance of a car decrease, when the speed of the car is reduced by 10.3 percent? Braking dista
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!