<u>Answer:</u> The value of
for the given reaction is 1.435
<u>Explanation:</u>
To calculate the molarity of solution, we use the equation:

Given mass of
= 9.2 g
Molar mass of
= 92 g/mol
Volume of solution = 0.50 L
Putting values in above equation, we get:

For the given chemical equation:

<u>Initial:</u> 0.20
<u>At eqllm:</u> 0.20-x 2x
We are given:
Equilibrium concentration of
= 0.057
Evaluating the value of 'x'

The expression of
for above equation follows:
![K_c=\frac{[NO_2]^2}{[N_2O_4]}](https://tex.z-dn.net/?f=K_c%3D%5Cfrac%7B%5BNO_2%5D%5E2%7D%7B%5BN_2O_4%5D%7D)
![[NO_2]_{eq}=2x=(2\times 0.143)=0.286M](https://tex.z-dn.net/?f=%5BNO_2%5D_%7Beq%7D%3D2x%3D%282%5Ctimes%200.143%29%3D0.286M)
![[N_2O_4]_{eq}=0.057M](https://tex.z-dn.net/?f=%5BN_2O_4%5D_%7Beq%7D%3D0.057M)
Putting values in above expression, we get:

Hence, the value of
for the given reaction is 1.435
Answer: 12.78ml
Explanation:
Given that:
Volume of KOH Vb = ?
Concentration of KOH Cb = 0.149 m
Volume of HBr Va = 17.0 ml
Concentration of HBr Ca = 0.112 m
The equation is as follows
HBr(aq) + KOH(aq) --> KBr(aq) + H2O(l)
and the mole ratio of HBr to KOH is 1:1 (Na, Number of moles of HBr is 1; while Nb, number of moles of KOH is 1)
Then, to get the volume of a 0.149 m potassium hydroxide solution Vb, apply the formula (Ca x Va)/(Cb x Vb) = Na/Nb
(0.112 x 17.0)/(0.149 x Vb) = 1/1
(1.904)/(0.149Vb) = 1/1
cross multiply
1.904 x 1 = 0.149Vb x 1
1.904 = 0.149Vb
divide both sides by 0.149
1.904/0.149 = 0.149Vb/0.149
12.78ml = Vb
Thus, 12.78 ml of potassium hydroxide solution is required.
<span>The high-energy electron travels down an electron transport chain, losing energy as it goes.
Some of the released energy drives pumping of </span><span><span>\text H^+<span>H<span><span>+</span><span></span></span></span></span>H, start superscript, plus, end superscript</span><span> ions from the stroma into the thylakoid interior, building a gradient.
</span><span><span>H^+<span>H<span><span>+</span><span></span></span></span></span>H, start superscript, plus, end superscript</span><span> ions from the splitting of water also add to the gradient.
</span><span><span> H^+<span>H<span><span>+</span><span></span></span></span></span>H, start superscript, plus, end superscript</span><span> ions flow down their gradient and into the stroma, they pass through ATP synthase, driving ATP production in a process known as </span>chemiosmosis<span>.</span>
Answer: because it consists of more than one element, which are hydrogen and oxygen in a covalent bond.
Ooooh boy alright. So, this may or may not be a limited reactant problem so we need to first find out of it is.
First, how many moles of each substance are there
the molar mass of BCl3 is <span>117.17 grams so 37.5 g / 117.17 is ~ .32 mol.
The molar mass of H2O is 18.02 so 60 / 18.02 is ~ 3.33 mol.
Now, for every 1 mole of BCl3, there are 3 moles of HCl created. Therefore, BCl3 can create ~ .96 moles.
For every 3 moles of H2O, there are 3 moles of HCl created. Therefore, HCl can create ~3.33 moles.
But, there is not enough BCl3 to support that 3.33 moles, only enough for .96 moles, therefore BCl3 is the limiting reactant. Now, to answer the question, simply multiply .96 moles by the molar mass of HCl.
.96 x 36.46 = ~35 g</span>