Answer:
A) involves changes in temperature
Explanation:
The figure is missing, but I assume that the region marked X represents the region in common between Gay-Lussac's law and Charle's Law.
Gay-Lussac's law states that:
"For an ideal gas kept at constant volume, the pressure of the gas is directly proportional to its absolute temperature"
Mathematically, it can be written as

where p is the pressure of the gas and T its absolute temperature.
Charle's Law states that:
"For an ideal gas kept at constant pressure, the volume of the gas is directly proportional to its absolute temperature"
Mathematically, it can be written as

where V is the volume of the gas and T its absolute temperature.
By looking at the two descriptions of the law, we see immediately that the property that they have in common is
A) involves changes in temperature
Since the temperature is NOT kept constant in the two laws.
The correct answers is 1/57
The answers are as follows:
1. TRUE, <span>The energy in a nuclear reaction comes from the transformation of mass to energy.
</span>
2. TRUE, <span>Although both fission and fusion generate energy, fusion produces much more energy than nuclear fission and produces less nuclear waste
</span>
3. TRUE, <span>In certain types of atomic bombs, a fuel, like plutonium-239, is bombarded with neutrons to create an uncontrolled nuclear reaction that splits the nuclei of the fuel.
</span>
I hope my answer has come to your help. Thank you for posting your question here in Brainly. We hope to answer more of your questions and inquiries soon. Have a nice day ahead!
Answer:
E° = -0.133 V
Explanation:
In the reaction:
X(s) + Y⁺(aq) → X⁺(aq) + Y(s)
<em>1 electron is transferred from X to Y</em>
Now, using Nernst equation:
E° = RT / nF ln K
<em>Where R is gas constant (8.314 J/molK), T is absolute temperature (Usually 298.15K), n are transferred electrons (1, for the reaction), F is faraday constant (96485C/mol) and K is equilibrium constant (5.59x10⁻³)</em>
Replacing:
E° = 8.314 J/molK*298.15K / 96485C/mol*1 ln 5.59x10⁻³
<em>E° = -0.133 V</em>
Answer:
- The answer is the concentration of an NaOH = 1.6 M
Explanation:
The most common way to solve this kind of problem is to use the formula
In your problem,
For NaOH
C₁ =?? v₁= 78.0 mL = 0.078 L
For H₂SO₄
C₁ =1.25 M v₁= 50.0 mL = 0.05 L
but you must note that for the reaction of NaOH with H₂SO₄
2 mol of NaOH raect with 1 mol H₂SO₄
So, by applying in above formula
- (C₁ * 0.078 L) = (2* 1.25 M * 0.05 L)
- C₁ = (2* 1.25 M * 0.05 L) / (0.078 L) = 1.6 M
<u>So, the answer is the concentration of an NaOH = 1.6 M</u>