1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Rashid [163]
3 years ago
5

With a reservoir pressure of 1.0 MPa and temperature of 750 K, air enters a converging-diverging nozzle, in a steady fashion. Fl

ow is isentropic and k=1.4. If exit Mach number is 2 and throat area is 20 cm2 , find (a) the throat conditions (static pressure, temperature, density, and mach number), (b) the exit plane conditions i
Engineering
1 answer:
iogann1982 [59]3 years ago
8 0

Answer:

a) P* = 0.5283 MPa , T* = 624.75 K , ρ* = 2.945 kg/m^3 , V* = 501.023 m/s

b) Pe = 0.1278 MPa , Te = 416.7 K , ρe = 1.069 kg/m^3 , Ve = 818.36 m/s, Ae = 33.75 cm^2

c) m' = 2.915 kg/s

Explanation:

Given:-

- The inlet pressure, Pi = 1.0 MPa

- The inlet temperature, Ti = 750 K

- Inlet velocity is negligible

- Steady, Isentropic Flow

- The specific heat ratio of air, k = 1.4

- Exit Mach number, Mae = 2

- The throat area, Ath = 20 cm^2

- Gas constant of air, R = 0.287 KJ / kg.K

Find:-

(a) the throat conditions (static pressure, temperature, density, and mach number)

b) the exit plane conditions

c) the mass flow rate

Solution:-

- For this problem we will assume air to behave like an ideal gas with constant specific heat at RTP. Also the flow of air through the nozzle is assumed to be steady, one dimensional, and Isentropic with constant specific heat ratio ( k ).

- First we will scrutinize on the exit conditions. We have a Mach number of 2 at the exit. The flow at the exit of converging-diverging nozzle is in super-sonic region this is only possible only if sonic ( Ma = 1 ) conditions are achieved by the flow at the throat area ( minimum cross-sectional area ).

- Moreover, the flow is almost still at the inlet. Hence, we can assume that the flow has negligible velocity ( vi = 0 m/s ) at the inlet and the reservoir temperature and pressure can be assumed to be stagnation temperature and pressures as follows:

                             P_o = 1.0 MPa\\\\T_o = 750 K

- Using the ideal gas law we can determine the stagnation density ( ρo ) as follows:

                             p_o = \frac{P_o}{RT_o} = \frac{1000}{0.287*750} =  4.64576\frac{kg}{m^3}

- We will use the already developed results for flow which has reached sonic velocity ( Ma = 1 ) at the throat region. Use Table A - 13, to determine the critical static values at the throat region:

                            \frac{P^*}{P_o} = 0.5283\\\\P^* = 0.5283*1 =  0.5283 MPa\\\\\frac{T^*}{T_o} = 0.8333\\\\T^* = 0.8333*750 =  624.75 K\\\\ \frac{p^*}{p_o} = 0.6339\\\\p^* = 0.6339*4.64576 =  2.945 \frac{kg}{m^3} \\\\

                            V^* = \sqrt{kRT^*} =\sqrt{1.4*287*624.75}  = 501.023 \frac{m}{s}

- Similarly, we will again employ the table A - 13 to determine the exit plane conditions for ( Ma = 2 ) as follows:

                           \frac{P_e}{P_o} = 0.1278 \\\\P_e = 0.1278*1.0 = 0.1278 MPa\\\\\frac{T_e}{T_o} = 0.5556 \\\\T_e = 0.5556*750 = 416.7 K\\\\\frac{p_e}{p_o} = 0.23 \\\\p_e = 0.23*4.64576 = 1.069 \frac{kg}{m^3} \\\\\frac{A_e}{A_t_h} = 1.6875 \\\\A_e =1.6875*20 = 33.75 cm^2\\

- The velocity at the exit plane ( Ve ) can be determined from the exit conditions as follows:

                        V_e = Ma_e*\sqrt{kRT_e} = 2*\sqrt{1.4*287*416.7} = 818.36 \frac{m}{s}  

- For steady flows the mass flow rate ( m' ) is constant at any section of the nozzle. We will use the properties at the throat section to determine the mass flow rate as follows:

                         m' = p^* A_t_h V^*\\\\m' = 2.945*20*10^-^4*501.023\\\\m' = 2.951 \frac{kg}{s}

You might be interested in
For an isotropic material, E and ν are often chosen as the two independent engineering constants. There are other elastic consta
pav-90 [236]

Answer:

khgy

Explanation:

nbv

8 0
3 years ago
For a fluid flowing through a pipe assuming that pressure drop per unit length of pipe (P/L) depends on the diameter of the pipe
Lyrx [107]

Answer:

Explanation:

La vaca

El pato

7 0
3 years ago
Come and look on my attachment​
CaHeK987 [17]

Crazy Guy what do uh mean ?

4 0
2 years ago
Two identical 3 in. major-diameter power screws (single-threaded) with modified square threads are used to raise and lower a 50-
sp2606 [1]

Answer:

Check the explanation

Explanation:

Kindly check the attached images below to see the step by step explanation to the question above.

6 0
2 years ago
F.R.E.E P.O.I.N.T.S F.R.E.E PO.I.N.T.S
grigory [225]

Answer:

yayyy thank you

lol

Explanation:

7 0
2 years ago
Read 2 more answers
Other questions:
  • A four-cylinder, four-stroke internal combustion engine has a bore of 3.7 in. and a stroke of 3.4 in. The clearance volume is 16
    14·1 answer
  • Annie has collected several items from around her house. She is using these objects to investigate which objects are attracted t
    12·1 answer
  • Some engineers have developed a device that provides lighting to rural areas with no access to grid electricity. The device is i
    13·1 answer
  • A transmitter has an output power of 0.1mW while the fiber has coupling loss of 12dB, attenuation of
    11·1 answer
  • In a flow over a flat plate, the Stanton number is 0.005: What is the approximate friction factor for this flow a)- 0.01 b)- 0.0
    8·1 answer
  • What additive keeps engines clean by preventing contaminants and deposits from collecting on surfaces?
    10·2 answers
  • a coiled spring is stretched 31.50 cm by a 2.00N weight. How far is it stretched by a 10.00 N weight?
    6·1 answer
  • Calculate the areas under the stress-strain curve (toughness) for the materials shown in Fig. below, (a) plot them as a
    15·1 answer
  • Ughhh my cramps hurt sm
    8·2 answers
  • The Web and Digital Communications pathway is broken down into four main categories of technology. Which category BEST describes
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!