1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Rashid [163]
3 years ago
5

With a reservoir pressure of 1.0 MPa and temperature of 750 K, air enters a converging-diverging nozzle, in a steady fashion. Fl

ow is isentropic and k=1.4. If exit Mach number is 2 and throat area is 20 cm2 , find (a) the throat conditions (static pressure, temperature, density, and mach number), (b) the exit plane conditions i
Engineering
1 answer:
iogann1982 [59]3 years ago
8 0

Answer:

a) P* = 0.5283 MPa , T* = 624.75 K , ρ* = 2.945 kg/m^3 , V* = 501.023 m/s

b) Pe = 0.1278 MPa , Te = 416.7 K , ρe = 1.069 kg/m^3 , Ve = 818.36 m/s, Ae = 33.75 cm^2

c) m' = 2.915 kg/s

Explanation:

Given:-

- The inlet pressure, Pi = 1.0 MPa

- The inlet temperature, Ti = 750 K

- Inlet velocity is negligible

- Steady, Isentropic Flow

- The specific heat ratio of air, k = 1.4

- Exit Mach number, Mae = 2

- The throat area, Ath = 20 cm^2

- Gas constant of air, R = 0.287 KJ / kg.K

Find:-

(a) the throat conditions (static pressure, temperature, density, and mach number)

b) the exit plane conditions

c) the mass flow rate

Solution:-

- For this problem we will assume air to behave like an ideal gas with constant specific heat at RTP. Also the flow of air through the nozzle is assumed to be steady, one dimensional, and Isentropic with constant specific heat ratio ( k ).

- First we will scrutinize on the exit conditions. We have a Mach number of 2 at the exit. The flow at the exit of converging-diverging nozzle is in super-sonic region this is only possible only if sonic ( Ma = 1 ) conditions are achieved by the flow at the throat area ( minimum cross-sectional area ).

- Moreover, the flow is almost still at the inlet. Hence, we can assume that the flow has negligible velocity ( vi = 0 m/s ) at the inlet and the reservoir temperature and pressure can be assumed to be stagnation temperature and pressures as follows:

                             P_o = 1.0 MPa\\\\T_o = 750 K

- Using the ideal gas law we can determine the stagnation density ( ρo ) as follows:

                             p_o = \frac{P_o}{RT_o} = \frac{1000}{0.287*750} =  4.64576\frac{kg}{m^3}

- We will use the already developed results for flow which has reached sonic velocity ( Ma = 1 ) at the throat region. Use Table A - 13, to determine the critical static values at the throat region:

                            \frac{P^*}{P_o} = 0.5283\\\\P^* = 0.5283*1 =  0.5283 MPa\\\\\frac{T^*}{T_o} = 0.8333\\\\T^* = 0.8333*750 =  624.75 K\\\\ \frac{p^*}{p_o} = 0.6339\\\\p^* = 0.6339*4.64576 =  2.945 \frac{kg}{m^3} \\\\

                            V^* = \sqrt{kRT^*} =\sqrt{1.4*287*624.75}  = 501.023 \frac{m}{s}

- Similarly, we will again employ the table A - 13 to determine the exit plane conditions for ( Ma = 2 ) as follows:

                           \frac{P_e}{P_o} = 0.1278 \\\\P_e = 0.1278*1.0 = 0.1278 MPa\\\\\frac{T_e}{T_o} = 0.5556 \\\\T_e = 0.5556*750 = 416.7 K\\\\\frac{p_e}{p_o} = 0.23 \\\\p_e = 0.23*4.64576 = 1.069 \frac{kg}{m^3} \\\\\frac{A_e}{A_t_h} = 1.6875 \\\\A_e =1.6875*20 = 33.75 cm^2\\

- The velocity at the exit plane ( Ve ) can be determined from the exit conditions as follows:

                        V_e = Ma_e*\sqrt{kRT_e} = 2*\sqrt{1.4*287*416.7} = 818.36 \frac{m}{s}  

- For steady flows the mass flow rate ( m' ) is constant at any section of the nozzle. We will use the properties at the throat section to determine the mass flow rate as follows:

                         m' = p^* A_t_h V^*\\\\m' = 2.945*20*10^-^4*501.023\\\\m' = 2.951 \frac{kg}{s}

You might be interested in
java Write a program that simulates tossing a coin. Prompt the user for how many times to toss the coin. Code a method with no p
max2010maxim [7]

Answer:

The solution code is written in Java.

  1. public class Main {
  2.    public static void main(String[] args) {
  3.        Scanner inNum = new Scanner(System.in);
  4.        System.out.print("Enter number of toss: ");
  5.        int num = inNum.nextInt();
  6.        for(int i=0; i < num; i++){
  7.            System.out.println(toss());
  8.        }
  9.    }
  10.    public static String toss(){
  11.        String option[] = {"heads", "tails"};
  12.        Random rand = new Random();
  13.        return option[rand.nextInt(2)];
  14.    }
  15. }

Explanation:

Firstly, we create a function <em>toss()</em> with no parameter but will return a string (Line 14). Within the function body, create an option array with two elements, "heads" and "tails" (Line 15). Next create a Random object (Line 16) and use <em>nextInt()</em> method to get random value either 0 or 1. Please note we need to pass the value of 2 into <em>nextInx() </em>method to ensure the random value generated is either 0 or 1.  We use this generate random value as an index of <em>option </em>array and return either "heads" or "tails" as output (Line 17).

In the main program, we create Scanner object and use it to prompt user to input an number for how many times to toss the coin (Line 6 - 7). Next, we use the input num to control how many times a for loop should run (Line 9). In each round of the loop, call the function <em>toss() </em>and print the output to terminal (Line 10).  

4 0
3 years ago
Read 2 more answers
An operating gear box (transmission) has 350 hp at its input shaft while 250. hp are delivered to the output shaft. The gear box
True [87]

Answer:

Rate of Entropy =210.14 J/K-s

Explanation:

given data:

power delivered to input = 350 hp

power delivered to output = 250 hp

temperature of surface = 180°F

rate of entropy is given as

Rate\  of\ entropy  = \frac{Rate\ of \ heat\  released}{Temperature}

T = 180°F = 82°C = 355 K

Rate of heat = (350 - 250) hp = 100 hp = 74600 W

Rate of Entropy= \frac{74600}{355} = 210.14 J/K-s

8 0
3 years ago
the AADT for a section of suburban freeway is 150000 veh/day. Assuming this is an urban radial facility, what range of direction
igomit [66]

Answer:

design hour volumes will be 4000 to 6000

Explanation:

given data

AADT  = 150000 veh/day

solution

we get here design hour volumes that is express as

design hour volumes  = AADT × k × D    ..............1

here k is factor and its  range is 8 to 12 % for urban

and D is directional distribution i.e traffic equal divided by the direction

so here design hour volumes will be 4000 to 6000

7 0
3 years ago
A compound sliding miter saw can be used to make
Sunny_sXe [5.5K]

Answer:

D

Explanation:

3 0
2 years ago
Help please its due today will mark you brainliest
Tems11 [23]

Answer:

launch- The first stage is ignited at launch and burns through the powered ascent until its propellants are exhausted. The first stage engine is then extinguished, the second stage separates from the first stage, and the second stage engine is ignited. The payload is carried atop the second stage into orbit

powered ascent-The first stage is ignited at launch and burns through the powered ascent until its propellants are exhausted. The first stage engine is then extinguished, the second stage separates from the first stage, and the second stage engine is ignited. The payload is carried atop the second stage into orbit

coasting flight-

When the rocket runs out of fuel, it enters a coasting flight. The vehicle slows down under the action of the weight and drag since there is no longer any thrust present. The rocket eventually reaches some maximum altitude which you can measure using some simple length and angle measurements and trigonometry.

ejection charge-At the end of the delay charge, an ejection charge is ignited which pressurizes the body tube, blows the nose cap off, and deploys the parachute. The rocket then begins a slow descent under parachute to a recovery. The forces at work here are the weight of the vehicle and the drag of the parachute.

slow decent- slow downs (i guess)

recovery-A recovery period is typically characterized by abnormally high levels of growth in real gross domestic product, employment, corporate profits, and other indicators. This is a turning point from contraction to expansion and often results in an increase in consumer confidence

Explanation:

6 0
3 years ago
Other questions:
  • A rubber wheel on a steel rim spins freely on a horizontal axle that is suspended by a fixed pivot at point P. When the wheel sp
    11·1 answer
  • For the following gear train, if the blue gear is moving at 50 rpm, what are the speeds of the other gears?
    14·1 answer
  • 5 lb of propane is contained in a closed, rigid tank initially at 80 lbf/in^2, 110 degrees Fahrenheit. Heat transfer occurs unti
    5·1 answer
  • If the bolt head and the supporting bracket are made of the same material having a failure shear stress of 'Tra;i = 120 MPa, det
    9·1 answer
  • Question 3. Assign boston_under_10 and manila_under_10 to the percentage of rides that are less than 10 minutes in their respect
    14·1 answer
  • A soil element is subjected to a minor principle stress of 50 kPa on a plane rotated 20 ° counterclockwise from vertical. If the
    10·1 answer
  • Give five examples of
    14·1 answer
  • What are the functions of the peripheral nervous system
    6·2 answers
  • Select the correct answer.
    12·1 answer
  • 3. What type of tool do you use to make angles?
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!