1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Rashid [163]
3 years ago
5

With a reservoir pressure of 1.0 MPa and temperature of 750 K, air enters a converging-diverging nozzle, in a steady fashion. Fl

ow is isentropic and k=1.4. If exit Mach number is 2 and throat area is 20 cm2 , find (a) the throat conditions (static pressure, temperature, density, and mach number), (b) the exit plane conditions i
Engineering
1 answer:
iogann1982 [59]3 years ago
8 0

Answer:

a) P* = 0.5283 MPa , T* = 624.75 K , ρ* = 2.945 kg/m^3 , V* = 501.023 m/s

b) Pe = 0.1278 MPa , Te = 416.7 K , ρe = 1.069 kg/m^3 , Ve = 818.36 m/s, Ae = 33.75 cm^2

c) m' = 2.915 kg/s

Explanation:

Given:-

- The inlet pressure, Pi = 1.0 MPa

- The inlet temperature, Ti = 750 K

- Inlet velocity is negligible

- Steady, Isentropic Flow

- The specific heat ratio of air, k = 1.4

- Exit Mach number, Mae = 2

- The throat area, Ath = 20 cm^2

- Gas constant of air, R = 0.287 KJ / kg.K

Find:-

(a) the throat conditions (static pressure, temperature, density, and mach number)

b) the exit plane conditions

c) the mass flow rate

Solution:-

- For this problem we will assume air to behave like an ideal gas with constant specific heat at RTP. Also the flow of air through the nozzle is assumed to be steady, one dimensional, and Isentropic with constant specific heat ratio ( k ).

- First we will scrutinize on the exit conditions. We have a Mach number of 2 at the exit. The flow at the exit of converging-diverging nozzle is in super-sonic region this is only possible only if sonic ( Ma = 1 ) conditions are achieved by the flow at the throat area ( minimum cross-sectional area ).

- Moreover, the flow is almost still at the inlet. Hence, we can assume that the flow has negligible velocity ( vi = 0 m/s ) at the inlet and the reservoir temperature and pressure can be assumed to be stagnation temperature and pressures as follows:

                             P_o = 1.0 MPa\\\\T_o = 750 K

- Using the ideal gas law we can determine the stagnation density ( ρo ) as follows:

                             p_o = \frac{P_o}{RT_o} = \frac{1000}{0.287*750} =  4.64576\frac{kg}{m^3}

- We will use the already developed results for flow which has reached sonic velocity ( Ma = 1 ) at the throat region. Use Table A - 13, to determine the critical static values at the throat region:

                            \frac{P^*}{P_o} = 0.5283\\\\P^* = 0.5283*1 =  0.5283 MPa\\\\\frac{T^*}{T_o} = 0.8333\\\\T^* = 0.8333*750 =  624.75 K\\\\ \frac{p^*}{p_o} = 0.6339\\\\p^* = 0.6339*4.64576 =  2.945 \frac{kg}{m^3} \\\\

                            V^* = \sqrt{kRT^*} =\sqrt{1.4*287*624.75}  = 501.023 \frac{m}{s}

- Similarly, we will again employ the table A - 13 to determine the exit plane conditions for ( Ma = 2 ) as follows:

                           \frac{P_e}{P_o} = 0.1278 \\\\P_e = 0.1278*1.0 = 0.1278 MPa\\\\\frac{T_e}{T_o} = 0.5556 \\\\T_e = 0.5556*750 = 416.7 K\\\\\frac{p_e}{p_o} = 0.23 \\\\p_e = 0.23*4.64576 = 1.069 \frac{kg}{m^3} \\\\\frac{A_e}{A_t_h} = 1.6875 \\\\A_e =1.6875*20 = 33.75 cm^2\\

- The velocity at the exit plane ( Ve ) can be determined from the exit conditions as follows:

                        V_e = Ma_e*\sqrt{kRT_e} = 2*\sqrt{1.4*287*416.7} = 818.36 \frac{m}{s}  

- For steady flows the mass flow rate ( m' ) is constant at any section of the nozzle. We will use the properties at the throat section to determine the mass flow rate as follows:

                         m' = p^* A_t_h V^*\\\\m' = 2.945*20*10^-^4*501.023\\\\m' = 2.951 \frac{kg}{s}

You might be interested in
Select the correct answer.
Lilit [14]

Answer:

D

Explanation:

Confidential data is not supposed to be shared amongst others.

8 0
3 years ago
Read 2 more answers
State five applications of thermochromic materials
rusak2 [61]

Explanation:

The end-use industries of thermochromic materials include packaging, printing & coating, medical, textile, industrial, and others. Printing & coating is the fastest-growing end-use industry of thermochromic materials owing to a significant increase in the demand for thermal paper for POS systems. The use of thermochromic materials is gaining momentum for interactive packaging that encourages consumers to take a product off the shelf and use it.

8 0
3 years ago
A train consists of a 50 Mg engine and three cars, each having a mass of 30 Mg . If it takes 75 s for the train to increase its
ohaa [14]

Answer:

T = 15 kN

F = 23.33 kN

Explanation:

Given the data in the question,

We apply the impulse momentum principle on the total system,

mv₁ + ∑\int\limits^{t2}_{t1} {Fx} \, dt = mv₂

we substitute

[50 + 3(30)]×10³ × 0 + FΔt = [50 + 3(30)]×10³ ×  ( 45 × 1000 / 3600 )  

F( 75 - 0 ) =  1.75 × 10⁶

The resultant frictional tractive force F is will then be;

F =  1.75 × 10⁶ / 75

F = 23333.33 N

F = 23.33 kN

Applying the impulse momentum principle on the three cars;

mv₁ + ∑\int\limits^{t2}_{t1} {Fx} \, dt = mv₂

[3(30)]×10³ × 0 + FΔt = [3(30)]×10³ ×  ( 45 × 1000 / 3600 )  

F(75-0) = 1.125 × 10⁶

The force T developed is then;

T =  1.125 × 10⁶ / 75

T = 15000 N

T = 15 kN

7 0
3 years ago
engineering uses data from pareto charts to analyse motor faults caused during their production. Explain one advantage of using
lions [1.4K]
The advantage of a pareto chart is to make sure they have all of their tools
3 0
3 years ago
What’s the symbol for elevation
nataly862011 [7]

Answer:

See image

Explanation:

textbook images

4 0
3 years ago
Other questions:
  • In a tensile test on a steel specimen, true strain is 0.171 at a stress of 263.8 MPa. When true stress is 346.2 MPa, true strain
    7·1 answer
  • When the vessel and its contents are warmed to 100 °C, Q decomposes into its constituent elements. What is the total pressure, a
    11·1 answer
  • . A roadway is being designed capable of allowing 70 mph vehicle speed. The superelevation around one curve is 0.05 inches per i
    15·1 answer
  • What are supercapacitors ?
    13·2 answers
  • A three-point bending test was performed on an aluminum oxide specimen having a circular cross section of radius 5.0 mm (0.20 in
    13·1 answer
  • Is microwave man made
    5·2 answers
  • Give me uses of a grinding machine in agriculture.
    15·1 answer
  • Explain the concept of energy conversion as applied to the generation of electricity also known as electrical energy​
    9·1 answer
  • Hello, so I have a watch and I don't know where the plugin for the charger is, or what brand it is. Please do help and please DO
    11·1 answer
  • A transformer has 300,000 windings in its primary coil and uses 12,000V AC input. (4 points) How many windings would be needed t
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!