Temperature and elevation, if it is cold in Idaho and warm on the eastern end of a mountain side in california (or if warm air is going in that direction) then the cold air, being more dense, will go towards california while the cold air in Idaho will become warm. Same goes for the rest of the world
Answer:
Decreases the time period of revolution
Explanation:
The time period of Cygnus X-1 orbiting a massive star is 5.6 days.
The orbital velocity of a planet is given by the formula,
v = √[GM/(R + h)]
In the case of rotational motion, v = (R +h)ω
ω = √[GM/(R + h)] /(R +h)
Where 'ω' is the angular velocity of the planet
The time period of rotational motion is,
T = 2π/ω
By substitution,
<em>T = 2π(R +h)√[(R + h)/GM] </em>
Hence, from the above equation, if the mass of the star is greater, the gravitational force between them is greater. This would reduce the time period of revolution of the planet.
Answer:
4
Explanation:
Divide 30 meters by 7.5 and you´re answer is 4. This is how I would think you solve the problem
Answer:
Explanation:
Total weight
My weight+weight of belongings
660+1100=1760N.
a. Work done by the elevator to travel a total height of 15.2m
Using newton law of motion
ΣF = ma
There are only two forces acting upward, the weight and the reaction by the elevator
Also note it is moving at constant velocity then, a=0
N - W=0
Then, N=W
N=1760N
So, workdone is given as
Wordone, =force × distance
Work done=1760×15.2
W=26,752J
W=26.752KJ
b. Work done on me alone is still need to go through the same process but will remove the weight of the belonging
Therefore,
Weight now = 660N
And using the same equation of motion
ΣF = ma
Comstant velocity, a=0
N - W=0
N=W
N=660N
Then, workdone
W=F×d
W=660×15.2
W=10,032J
W=10.032KJ
Answer:
4 is the best option for it as there are some stuff in grade to ye