Excess fertilizer use results in nutrient pollution by effecting the nutrition values of the plants we eat.
Cutting down trees more likely to result in air pollution by an increase in greenhouse gases.
Pouring oil in drain creates water pollution which is not a nutrient source.
Answer:
ω = ω₀ + α t
ω² = ω₀² + 2 α θ
θ = θ₀ + ω₀ t + ½ α t²
Explanation:
Rotational kinematics can be treated as equivalent to linear kinematics, for this change the displacement will change to the angular displacement, the velocity to the angular velocity and the acceleration to the angular relation, that is
x → θ
v → ω
a → α
with these changes the three linear kinematics relations change to
ω = ω₀ + α t
ω² = ω₀² + 2 α θ
θ = θ₀ + ω₀ t + ½ α t²
where it should be clarified that to use these equations the angles must be measured in radians
Can be absorbed and transformed into heat. i know this because i used to work as a constructor for lights and i had to go over a training on this subject.
Answer:
a) 113N
b) 0.37
Explanation:
a) Using the Newton's second law:
\sum Fx =ma
Since the crate doesn't move (static), acceleration will be zero. The equation will become:
\sum Fx = 0
\sumFx = Fm - Ff = 0.
Fm is the applied force
Ff is the frictional force
Since Fm - Ff = 0
Fm = Ff
This means that the applied force is equal to the force of friction if the crate is static.
Since applied force is 113N, hence the magnitude of the static friction force will also be 113N
b) Using the formula
Ff = nR
n is the coefficient of friction
R is the reaction = mg
R = 31.2 × 9.8
R = 305.76N
From the formula
n = Ff/R
n = 113/305.76
n = 0.37
Hence the minimum possible value of the coefficient of static friction between the crate and the floor is 0.37
Arrows point away from both north and south.