Answer:
They refer to energy that moves. Kinetic energy is energy that is currently moving. Potential refers to energy that has yet to move, or simply energy in wait
Explanation:
Ill say <span>calcium hydroxide but hope this helps :)</span>
I believe it is b electric energy etc...
Answer:
- <em>The volume of 14.0 g of nitrogen gas at STP is </em><u><em>11.2 liter.</em></u>
Explanation:
STP stands for standard pressure and temperature.
The International Institute of of Pure and Applied Chemistry, IUPAC changed the definition of standard temperature and pressure (STP) in 1982:
- Before the change, STP was defined as a temperature of 273.15 K and an absolute pressure of exactly 1 atm (101.325 kPa).
- After the change, STP is defined as a temperature of 273.15 K and an absolute pressure of exactly 105 Pa (100 kPa, 1 bar).
Using the ideal gas equation of state, PV = nRT you can calculate the volume of one mole (n = 1) of gas. With the former definition, the volume of a mol of gas at STP, rounded to 3 significant figures, was 22.4 liter. This is classical well known result.
With the later definition, the volume of a mol of gas at STP is 22.7 liter.
I will use the traditional measure of 22.4 liter per mole of gas.
<u>1) Convert 14.0 g of nitrogen gas to number of moles:</u>
- n = mass in grams / molar mass
- Atomic mass of nitrogen: 14.0 g/mol
- Nitrogen gas is a diatomic molecule, so the molar mass of nitrogen gas = molar mass of N₂ = 14.0 × 2 g/mol = 28.0 g/mol
- n = 14.0 g / 28.0 g/mol = 0.500 mol
<u>2) Set a proportion to calculate the volume of nitrogen gas:</u>
- 22.4 liter / mol = x / 0.500 mol
- Solve for x: x = 0.500 mol × 22.4 liter / mol = 11.2 liter.
<u>Conclusion:</u> the volume of 14.0 g of nitrogen gas at STP is 11.2 liter.
Answer:

Explanation:
Hello!
In this case, since we are considering an gas, which can be considered as idea, we can write the ideal gas equation in order to write it in terms of density rather than moles and volume:

Whereas MM is the molar mass of the gas. Now, since we can identify the initial and final states, we can cancel out R and MM since they remain the same:

It means we can compute the final density as shown below:

Now, we plug in to obtain:

Regards!