Answer:
0.6 moles of CaO will produced.
Explanation:
Given data:
Mass of calcium = 23.9 g
Moles of CaO produced = ?
Solution:
Chemical equation:
2Ca + O₂ → 2CaO
Number of moles of calcium:
Number of moles = mass/ molar mass
Number of moles = 23.9 g / 40 g/mol
Number of moles = 0.6 mol
Now we will compare the moles of calcium and CaO.
Ca : CaO
2 : 2
0.6 : 0.6
0.6 moles of CaO will produced.
Answer:
a. A reaction in which the entropy of the system increases can be spontaneous only if it is endothermic.
Explanation:
The change in free energy (ΔG) that is, the <u>energy available to do work</u>, of a system for a constant-temperature process is:

-
When ΔG < 0 the reaction is spontaneous in the forward direction.
- When ΔG > 0 the reaction is nonspontaneous. The reaction is
spontaneous in the opposite direction.
- When ΔG = 0 the system is at equilibrium.
If <u>both ΔH and ΔS are positive</u>, then ΔG will be negative only when the TΔS term is greater in magnitude than ΔH. This condition is met when T is large.
Answer : The maximum amount of nickel(II) cyanide is 
Explanation :
The solubility equilibrium reaction will be:

Initial conc. 0.220 0
At eqm. (0.220+s) 2s
The expression for solubility constant for this reaction will be,
![K_{sp}=[Ni^{2+}][CN^-]^2](https://tex.z-dn.net/?f=K_%7Bsp%7D%3D%5BNi%5E%7B2%2B%7D%5D%5BCN%5E-%5D%5E2)
Now put all the given values in this expression, we get:


Therefore, the maximum amount of nickel(II) cyanide is 