Answer:
390 ft²
Step-by-step explanation:
The longer base of a trapezoid is 8 ft. The longer base of a similar trapezoid is 13 ft. The area of the smaller trapezoid is 240 ft² What is the area of the larger trapezoid?
We solve the above question using proportion
(Longer base/Area of trapezoid) smaller trapezoid = (Longer base/Area of trapezoid) bigger trapezoid
Let the the Area of the bigger trapezoid = x
Hence,
= 8ft/240ft = 13ft/x ft
Cross Multiply
8ft × x = 240ft × 13ft
x = 240ft² × 12 ft/8 ft
x = 390 ft²
Answer:
<em>l = w + 3cm</em>
<em>l = w + 3cmp = 2l + 2w = 58cm</em>
<em>l = w + 3cmp = 2l + 2w = 58cm </em>
<em>l = w + 3cmp = 2l + 2w = 58cm Solve by substitution:</em>
<em>l = w + 3cmp = 2l + 2w = 58cm Solve by substitution:2l + 2w = 58 ⇒ 2(w + 3) + 2w = 58</em>
<em>l = w + 3cmp = 2l + 2w = 58cm Solve by substitution:2l + 2w = 58 ⇒ 2(w + 3) + 2w = 58⇒ 2w + 6 + 2w = 4w + 6 = 58</em>
<em>l = w + 3cmp = 2l + 2w = 58cm Solve by substitution:2l + 2w = 58 ⇒ 2(w + 3) + 2w = 58⇒ 2w + 6 + 2w = 4w + 6 = 58⇒ 4w = 52 ⇒ w = 13</em>
<em>l = w + 3cmp = 2l + 2w = 58cm Solve by substitution:2l + 2w = 58 ⇒ 2(w + 3) + 2w = 58⇒ 2w + 6 + 2w = 4w + 6 = 58⇒ 4w = 52 ⇒ w = 13 </em>
<em>l = w + 3cmp = 2l + 2w = 58cm Solve by substitution:2l + 2w = 58 ⇒ 2(w + 3) + 2w = 58⇒ 2w + 6 + 2w = 4w + 6 = 58⇒ 4w = 52 ⇒ w = 13 Plug back in:</em>
<em>l = w + 3cmp = 2l + 2w = 58cm Solve by substitution:2l + 2w = 58 ⇒ 2(w + 3) + 2w = 58⇒ 2w + 6 + 2w = 4w + 6 = 58⇒ 4w = 52 ⇒ w = 13 Plug back in:l = (13cm) + 3cm = 16cm</em>
<em>l = w + 3cmp = 2l + 2w = 58cm Solve by substitution:2l + 2w = 58 ⇒ 2(w + 3) + 2w = 58⇒ 2w + 6 + 2w = 4w + 6 = 58⇒ 4w = 52 ⇒ w = 13 Plug back in:l = (13cm) + 3cm = 16cmStep-by-step explanation:</em>
I hope this helps you.
Answer:
-20a - 65 = -104 for a = 2.7
-6x + 52 = 45 for x = 1 1/6
Step-by-step explanation:
-20a - 50 for a = 2.7
Insert 2.7 in for a.
-20(2.7) - 50 = -54 - 50 = -104
-6x + 52 for x = 1 1/6
Insert 1 1/6 for x.
-6(1 1/6) + 52 = -7 + 52 = 45
Answer:
5
Step-by-step explanation:
Cards are drawn, one at a time, from a standard deck; each card is replaced before the next one is drawn. Let X be the number of draws necessary to get an ace. Find E(X) is given in the following way
Step-by-step explanation:
- From a standard deck of cards, one card is drawn. What is the probability that the card is black and a
jack? P(Black and Jack) P(Black) = 26/52 or ½ , P(Jack) is 4/52 or 1/13 so P(Black and Jack) = ½ * 1/13 = 1/26
- A standard deck of cards is shuffled and one card is drawn. Find the probability that the card is a queen
or an ace.
P(Q or A) = P(Q) = 4/52 or 1/13 + P(A) = 4/52 or 1/13 = 1/13 + 1/13 = 2/13
- WITHOUT REPLACEMENT: If you draw two cards from the deck without replacement, what is the probability that they will both be aces?
P(AA) = (4/52)(3/51) = 1/221.
- WITHOUT REPLACEMENT: What is the probability that the second card will be an ace if the first card is a king?
P(A|K) = 4/51 since there are four aces in the deck but only 51 cards left after the king has been removed.
- WITH REPLACEMENT: Find the probability of drawing three queens in a row, with replacement. We pick a card, write down what it is, then put it back in the deck and draw again. To find the P(QQQ), we find the
probability of drawing the first queen which is 4/52.
- The probability of drawing the second queen is also 4/52 and the third is 4/52.
- We multiply these three individual probabilities together to get P(QQQ) =
- P(Q)P(Q)P(Q) = (4/52)(4/52)(4/52) = .00004 which is very small but not impossible.
- Probability of getting a royal flush = P(10 and Jack and Queen and King and Ace of the same suit)