the data represents the heights of fourteen basketball players, in inches. 69, 70, 72, 72, 74, 74, 74, 75, 76, 76, 76, 77, 77, 8
Daniel [21]
If you would like to know the interquartile range of the new set and the interquartile range of the original set, you can do this using the following steps:
<span>The interquartile range is the difference between the third and the first quartiles.
The original set: </span>69, 70, 72, 72, 74, 74, 74, 75, 76, 76, 76, 77, 77, 82
Lower quartile: 72
Upper quartile: 76.25
Interquartile range: upper quartile - lower quartile = 76.25 - 72 = <span>4.25
</span>
The new set: <span>70, 72, 72, 74, 74, 74, 75, 76, 76, 76, 77, 77
</span>Lower quartile: 72.5
Upper quartile: 76
Interquartile range: upper quartile - lower quartile = 76 - 72.5 = 3.5
The correct result would be: T<span>he interquartile range of the new set would be 3.5. The interquartile range of the original set would be more than the new set.</span>
Answer:
The shortest altitude is 6.72 cm
Step-by-step explanation:
Given that the side lengths are
24 cm, 25 cm, 7 cm
The area of a triangle =

Where;
s = Half the perimeter = (24 + 25 + 7)/2 = 28
A = √((28×(28 - 24)×(28 - 25)×(28 - 7)) = 84 cm²
We note that 84/7 = 12
Therefore, the triangle is a right triangle with hypotenuse = 25, and legs, 24 and 7, the height of the triangle = 7
To find the shortest altitude, we utilize the formula for the area of the triangle A = 1/2 base × Altitude
Altitude = A/(1/2 ×base)
Therefore, the altitude is inversely proportional to the base, and to reduce the altitude, we increase the base as follows;
We set the base to 25 cm to get;
Area of the triangle A = 1/2 × base × Altitude
84 = 1/2 × 25 × Altitude
Altitude = 84/(1/2 × 25) = 6.72 cm
The shortest altitude = 6.72 cm.
No the game with tax after the %50 off will com to $25.08 ron will be short .08 cents
Answer:
the answer is a octagon that has rotation of 45degrees