Answer:
20cm
Explanation:
A convex lens has a positive focal length and the object placed in front of it produce both virtual and real image <em>(image distance can be negative or positive depending on the nature of the image</em>).
According to the lens equation
where;
f is the focal length of the lens
u is the object distance
v is the image distance
If the magnification is - 0.6
mag = v/u = -0.5
v = -0.5u
since v = 10cm
10 = -0.5u
u = -10/0.5
u =-20 cm
Substitute u = -20cm ( due to negative magnification)and v = 10cm into the lens formula to get the focal length f

Hence the focal length of the convex lens is 20cm
Answer:
A) The space time coordinate x of the collision in Earth's reference frame is
.
B) The space time coordinate t of the collision in Earth's reference frame is

Explanation:
We are told a rocket travels in the x-direction at speed v=0,70 c (c=299792458 m/s is the exact value of the speed of light) with respect to the Earth. A collision between two comets is observed from the rocket and it is determined that the space time coordinates of the collision are (x',t') = (3.4 x 10¹⁰ m, 190 s).
An event indicates something that occurs at a given location in space and time, in this case the event is the collision between the two comets. We know the space time coordinates of the collision seen from the reference frame of the rocket and we want to find out the space time coordinates in Earth's reference frame.
<em>Lorentz transformation</em>
The Lorentz transformation relates things between two reference frames when one of them is moving with constant velocity with respect to the other. In this case the two reference frames are the Earth and the rocket that is moving with speed v=0,70 c in the x axis.
The Lorentz transformation is




prime coordinates are the ones from the rocket reference frame and unprimed variables are from the Earth's reference frame. Since we want position x and time t in the Earth's frame we need the inverse Lorentz transformation. This can be obtained by replacing v by -v and swapping primed an unprimed variables in the first set of equations




First we calculate the expression in the denominator


then we calculate t




finally we get that

then we calculate x






finally we get that

<span>A van is traveling on a road at a speed of 55 km/h relative to a
stationary observer on the side of the road. A girl sitting near the
driver of the van throws a paper airplane to a boy at the back of the
van with a speed of 2 km/h relative to the girl, the boy, and the van.
The speed of the paper airplane, relative to the same stationary observer
on the side of the road, is (55 - 2) = 53 km/h. No rounding is necessary.</span>