According to the description given in the photo, the attached figure represents the problem graphically for the Atwood machine.
To solve this problem we must apply the concept related to the conservation of energy theorem.
PART A ) For energy conservation the initial kinetic and potential energy will be the same as the final kinetic and potential energy, so



PART B) Replacing the values given as,




Therefore the speed of the masses would be 1.8486m/s
When you are on a huge water slide, the force present as you slide is the gravitational force. It is because the gravity enables you to slide down the water slide. The net force is the overall forces of the object, so as you slide the water slide, you may experience the net force once you slide down with the gravity and water sliding you down.
Answer:
3.125J
Explanation:
K.E.= 1/2(mass)(velocity)^2
K.E.=1/2(0.25)(5)^2=3.125
Answer:
The answer is Mechanical Energy