1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
stealth61 [152]
4 years ago
15

Traditional Indonesian music uses an ensemble called a gamelan that is based on tuned percussion instruments somewhat like gongs

. In Bali, the gongs are often grouped in pairs that are slightly out of tune with each other. When both are played at once, the beat frequency lends a distinctive vibrating quality to the music. Suppose a pair of gongs are tuned to produce notes at 151 Hz and 155 Hz. How many beats are heard if the gongs are struck together and both ring for 2.5 s?
Physics
1 answer:
Vlada [557]4 years ago
3 0

Answer:

n = 10 beats

Explanation:

Given:

- Frequency of note f1 = 151 Hz

- Frequency of note f2 = 155 Hz

- The total time they ring t = 2.5 s

Find:

How many beats are heard

Solution:

- The frequency of beat (fb) is the difference between the two frequencies of notes as follows:

                                fb = f2 - f1

                                fb = 155 - 151

                                fb = 4 Hz

- The number of beats per second is also called beat frequency:

                                n = fb*t

                                n = 4*2.5

                                n = 10 beats

           

You might be interested in
On the way to the moon, the Apollo astronauts reach a point where the Moon’s gravitational pull is stronger than that of Earth’s
Drupady [299]

Answer:

rm = 38280860.6[m]

Explanation:

We can solve this problem by using Newton's universal gravitation law.

In the attached image we can find a schematic of the locations of the Earth and the moon and that the sum of the distances re plus rm will be equal to the distance given as initial data in the problem rt = 3.84 × 108 m

r_{e} = distance earth to the astronaut [m].\\r_{m} = distance moon to the astronaut [m]\\r_{t} = total distance = 3.84*10^8[m]

Now the key to solving this problem is to establish a point of equalisation of both forces, i.e. the point where the Earth pulls the astronaut with the same force as the moon pulls the astronaut.

Mathematically this equals:

F_{e} = F_{m}\\F_{e} =G*\frac{m_{e} *m_{a}}{r_{e}^{2}  } \\

F_{m} =G*\frac{m_{m}*m_{a}  }{r_{m} ^{2} } \\where:\\G = gravity constant = 6.67*10^{-11}[\frac{N*m^{2} }{kg^{2} } ] \\m_{e}= earth's mass = 5.98*10^{24}[kg]\\ m_{a}= astronaut mass = 100[kg]\\m_{m}= moon's mass = 7.36*10^{22}[kg]

When we match these equations the masses cancel out as the universal gravitational constant

G*\frac{m_{e} *m_{a} }{r_{e}^{2}  } = G*\frac{m_{m} *m_{a} }{r_{m}^{2}  }\\\frac{m_{e} }{r_{e}^{2}  } = \frac{m_{m} }{r_{m}^{2}  }

To solve this equation we have to replace the first equation of related with the distances.

\frac{m_{e} }{r_{e}^{2}  } = \frac{m_{m} }{r_{m}^{2} } \\\frac{5.98*10^{24} }{(3.84*10^{8}-r_{m}  )^{2}  } = \frac{7.36*10^{22}  }{r_{m}^{2} }\\81.25*r_{m}^{2}=r_{m}^{2}-768*10^{6}* r_{m}+1.47*10^{17}  \\80.25*r_{m}^{2}+768*10^{6}* r_{m}-1.47*10^{17} =0

Now, we have a second-degree equation, the only way to solve it is by using the formula of the quadratic equation.

r_{m1,2}=\frac{-b+- \sqrt{b^{2}-4*a*c }  }{2*a}\\  where:\\a=80.25\\b=768*10^{6} \\c = -1.47*10^{17} \\replacing:\\r_{m1,2}=\frac{-768*10^{6}+- \sqrt{(768*10^{6})^{2}-4*80.25*(-1.47*10^{17}) }  }{2*80.25}\\\\r_{m1}= 38280860.6[m] \\r_{m2}=-2.97*10^{17} [m]

We work with positive value

rm = 38280860.6[m] = 38280.86[km]

6 0
3 years ago
4.) An apartment building is on fire and a guy is trapped on the fire escape ladder. There is a
Tems11 [23]

Answer:

5.3 m/s

Explanation:

First, find the time it takes for him to fall 7m.

y = y₀ + v₀ t + ½ at²

0 = 7 + (0) t + ½ (-9.8) t²

0 = 7 − 4.9 t²

t ≈ 1.20 s

Now find the velocity he needs to travel 6.3m in that time.

x = x₀ + v₀ t + ½ at²

6.3 = 0 + v₀ (1.20) + ½ (0) (1.20)²

v₀ ≈ 5.27 m/s

Rounded to two significant figures, the man must run with a speed of 5.3 m/s.

3 0
3 years ago
Waves travel at different speeds when they travel in different_________.
Gnesinka [82]
I am sure it is frequency
8 0
3 years ago
An airplane travels at 300 mi/h south for 2.00 h and then at 250 mi/h north for 750 miles. What is the average speed for the tri
Anettt [7]

Answer:

270 mi/h

Explanation:

Given that,

To the south,

v₁ = 300 mi/h, t₁ = 2 h

We can find distance, d₁

d_1=v_1\times t_1\\\\d_1=300\times 2\\\\d_1=600\ \text{miles}

To the north,

v₂ = 250 mi/h, d₂ = 750 miles

We can find time, t₂

t_2=\dfrac{d_2}{v_2}\\\\t_2=\dfrac{750\ \text{miles}}{250\ \text{mi/h}}\\\\t_2=3\ h

Now,

Average speed = total distance/total time

V=\dfrac{d_1+d_2}{t_1+t_2}\\\\V=\dfrac{600+750}{2+3}\\\\V=270\ \text{mi/h}

Hence, the average speed for the trip is 270 mi/h.

3 0
3 years ago
Which of the following elements do living things have that volcanic rocks do not have?
jek_recluse [69]

Answer: silicon,or maybe none.

Explanation: I searched it up not really sure sorry

8 0
3 years ago
Other questions:
  • Luc, who is 1.80 m tall and weighs 950 N, is standing at the center of a playground merry-go-round with his arms extended,
    14·1 answer
  • What is the primary energy that powers a car
    8·1 answer
  • Need help on question b
    7·1 answer
  • An airplane flies 12 m/s due north with a velocity of 35.11 m/s. how far east does it fly?
    12·2 answers
  • What is the period of a wave if the frequency is? 5 Hz
    13·1 answer
  • What are the methods of heat transfer? ​
    13·1 answer
  • Consider a hydrogen atom in the n = 1 state. The atom is placed in a uniform B field of magnitude 2.5 T. Calculate the energy di
    5·1 answer
  • Within each biome,how can the environment be organized into levels from complex to simple?
    7·1 answer
  • if two masses 5.2kg and 4.8kg are attached to ends of inextensible string passed over a friction less pulley then acceleration o
    13·1 answer
  • A man has 2 spheres A and B. He gently drops sphere A vertically down and throws the sphere B horizontally at the same time. Whi
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!