Answer:
<em>displacement = -85 miles</em>
Explanation:
<u>Displacement
</u>
It's a magnitude used to measure the linear space between two points. It's computed as the subtraction of the final position minus the initial position which results in a vector. Notice the displacement only depends on the initial and final positions and not on the path the object has traveled.
Brayden starts to measure his position when the mile marker reads 260. Then he travels to the 150-mile marker and goes back to the 175-mile marker, his final position. As mentioned, the displacement only depends on the relative positions, so
displacement = 175 - 260 = -85 miles
Answer:
(a) 0.833 j
(b) 2.497 j
(c) 4.1625 j
(d) 4.995 watt
Explanation:
We have given force F = 5 N
Mass of the body m = 15 kg
So acceleration 
As the body starts from rest so initial velocity u = 0 m/sec
(a) From second equation of motion 
For t = 1 sec

We know that work done W =force × distance = 5×0.1666 =0.833 j
(b) For t = 2 sec

We know that work done W =force × distance = 5×0.666 =3.33 j
So work done in second second = 3.33-0.833 = 2.497 j
(c) For t = 3 sec

We know that work done W =force × distance = 5×1.4985 =7.4925 j
So work done in third second = 7.4925 - 2.497 -0.833 = 4.1625 j
(d) Velocity at the end of third second v = u+at
So v = 0+0.333×3 = 0.999 m /sec
We know that power P = force × velocity
So power = 5× 0.999 = 4.995 watt
The higher the frequency of a wave the more energy the wave has.
Answer:
t = 6.63 s
Explanation:
Given that,
Initial velocity of the puck, u = 7.3 m/s
Deacceleration of the puck, a = -1.1 m/s²
Distance traveled, d = 5 m
We need to find the time the goalie have to stop the puck. Using equation of motion.
v = u +at
v = 0 (stops)
So,

So, the required time is 6.63 seconds.
From the calculations, the final momentum of B is 8.16 m/s
<h3>What is conservation of linear momentum?</h3>
According to the principle of the conservation of linear momentum, the momentum before collision is equal to the total momentum after collision.
This implies that;
MaUa + MbUb = MaVa + MaVa
Substituting values;
(0.08 kg * 0.5 m/s) + (0.05 kg * 0 m/s) = (0.08 kg * −0.1 m/s) + (0.05 kg * v)
0.4 = -0.008 + 0.05v
v = 8.16 m/s
Learn more about more about momentum: brainly.com/question/24030570:
#SPJ1