Answer:
A and B
Explanation:
The relation between frequency and wavelength is shown below as:

c is the speed of light having value 
Thus, the product of the wavelength and the frequency is constant and equal to 
<u>Option A is correct.</u>
Given, Frequency = 
Thus, Wavelength is:



Also, 1 m =
Å
So,
<u>Wavelength = 3.0 Å</u>
<u>Option B is correct.</u>
As stated above, the speed of electromagnetic radiation is constant. Hence, each radiation of the spectrum travels with same speed.
<u>Option C is incorrect.</u>
Answer:
They will move the fridge if they all push in the same direction, but it will not move with constant velocity
Explanation:
The maximum static friction force is
(negative sign since its direction is opposite to the push applied by the people)
Sam can apply a force of 130 N, while Amir and Andre can apply a push of 65 N each, so the total force that they can apply, if they push in the same direction, will be:

This force is larger than the frictional force, so the fridge will start moving.
However, the net force on the fridge will be:

And according to Newton's second law,

where m is the mass of the fridge and a its acceleration, since the net force is not zero, then the fridge will have a non-zero acceleration, so it will not move with constant velocity.
15:) using more force in your muscle will increase the force used to bounce the basketball
16:) the pulling of gravity livitation does not allow the ball to go back up with the hieght it was dropped from on the scientifical drop point
14:) <span>a weight hung from a fixed point so that it can swing freely backward and forward, especially a rod with a weight at the end that regulates the mechanism of a clock that is the deffinition of to which of the word pendulum read it do not plagarize and i hope ii helped and have a great day bye.)::</span>
Answer:
T = 712.9 N
Explanation:
First, we will find the speed of the wave:
v = fλ
where,
v = speed of the wave = ?
f = frequency = 890 Hz
λ = wavelength = 0.1 m
Therefore,
v = (890 Hz)(0.1 m)
v = 89 m/s
Now, we will find the linear mass density of the wire:

where,
μ = linear mass density of wie = ?
m = mass of wire = 90 g = 0.09 kg
L = length of wire = 1 m
Therefore,

μ = 0.09 kg/m
Now, the tension in wire (T) will be:
T = μv² = (0.09 kg/m)(89 m/s)²
<u>T = 712.9 N</u>
Pascal's law of fluid transfer states that when there is an increase in fluid pressure, the rest of the extrinsic variables also increases. For example, in a flow of liquid in an orifice, there is a contraction of diameter in the orifice part. The fluid that will go in there increases in pressure and thereby an increase in velocity as well.