1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
TEA [102]
2 years ago
10

Ina shoots a large marble (Marble A, mass: 0.08 kg) at a smaller marble (Marble B, mass: 0.05 kg) that is sitting still. Marble

A was initially moving at a velocity of 0.5 m/s, but after the collision, it has a velocity of −0.1 m/s. What is the resulting velocity of marble B after the collision? Be sure to show your work for solving this problem along with the final answer.
Physics
1 answer:
stich3 [128]2 years ago
3 0

From the calculations, the final momentum of B is 8.16 m/s

<h3>What is conservation of linear momentum?</h3>

According to the principle of the conservation of linear momentum, the momentum before collision is equal to the total momentum after collision.

This implies that;

MaUa + MbUb = MaVa + MaVa

Substituting values;

(0.08 kg * 0.5 m/s) + (0.05 kg * 0 m/s) = (0.08 kg * −0.1 m/s) + (0.05 kg * v)

0.4 = -0.008 + 0.05v

v = 8.16 m/s

Learn more about more about momentum: brainly.com/question/24030570:

#SPJ1

You might be interested in
A car has a momentum of 20,000 kg • m/s. What would the car’s momentum be if its velocity doubles?
AnnyKZ [126]

To answer this question, it helps enormously if you know
the formula for momentum:

           Momentum = (mass) x (speed) .

Looking at the formula, you can see that momentum is directly
proportional to speed.  So if speed doubles, so does momentum.

If the car's momentum is 20,000 kg-m/s now, then after its speed
doubles, its momentum has also doubled, to 40,000 kg-m/s.

6 0
3 years ago
Read 2 more answers
Calculate the kinetic energy in joules of an automobile weighing 2135 lb and traveling at 55 mph. (1 mile = 1.6093 km, 1 lb = 45
victus00 [196]
<span>Let's convert the speed to m/s: speed = (55 mph) (1609.3 m / mile) (1 hour / 3600 seconds) speed = 24.59 m/s Let's convert the mass to kilograms: mass = (2135 lb) (0.45359 kg / lb) mass = 968.4 kg We can find the kinetic energy KE: KE = (1/2) m v^2 KE = (1/2) (968.4 kg) (24.59 m/s)^2 KE = 292780 joules The kinetic energy of the automobile is 292780 joules.</span>
4 0
3 years ago
Rick is moving a wheelbarrow full of bricks out to the curb. The bricks in the wheelbarrow weigh more than Rick is able to carry
USPshnik [31]

Answer is given below

Explanation:

  • This is happen because here when Rick walks with full loaded wheelbarriow of bricks, he able to move it because Rick lifts the wheelbarrow handle
  • So, most of the weight of full loaded wheelbarrow's load goes on that's wheel and due to friction force between wheel and surface it can easy to move
  • He uses force to rotate the wheel, much more than the force applied to the rim of the wheel on the axis of rotation or torque

3 0
3 years ago
A 42.0-kg parachutist is moving straight downward with a speed of 3.85 m/s. (a) If the parachutist comes to rest with constant a
RideAnS [48]

Answer:

-414.96 N

Explanation:

t = Time taken

u = Initial velocity

v = Final velocity

s = Displacement

a = Acceleration

v^2-u^2=2as\\\Rightarrow a=\frac{v^2-u^2}{2s}\\\Rightarrow a=\frac{0^2-3.85^2}{2\times 0.75}\\\Rightarrow a=-9.88\ m/s^2

F=ma\\\Rightarrow F=42\times -9.88\\\Rightarrow F=-414.96\ N

The force the ground exerts on the parachutist is -414.96 N

If the distance is shorter than 0.75 m then the acceleration will increase causing the force to increase

5 0
3 years ago
A 65.0-Ω resistor is connected to the terminals of a battery whose emf is 12.0 V and whose internal resistance is 0.5 Ω. Calcula
Luda [366]

Answer:

a) 0.1832 A

b) 11.91 Volts

c) 2.18 Watt , 0.0168 Watt

Explanation:

(a)

R = external resistor connected to the terminals of the battery = 65 Ω

E = Emf of the battery = 12.0 Volts

r = internal resistance of the battery = 0.5 Ω

i = current flowing in the circuit

Using ohm's law

E = i (R + r)

12 = i (65 + 0.5)

i = 0.1832 A

(b)

Terminal voltage is given as

V_{ab} = i R

V_{ab} = (0.1832) (65)

V_{ab} = 11.91 Volts

(c)

Power dissipated in the resister R is given as

P_{R} = i²R

P_{R} = (0.1832)²(65)

P_{R} = 2.18 Watt

Power dissipated in the internal resistance is given as

P_{r} = i²r

P_{r} = (0.1832)²(0.5)

P_{r} = 0.0168 Watt

5 0
3 years ago
Other questions:
  • Please help me with part b.
    11·1 answer
  • Suppose you ride your bike to the library traveling at 0.5 km/min. It takes you 25 minutes to get to the library. How far did yo
    5·2 answers
  • Frame S' passes frame S in the usual way. Two events are simultaneous in S'.
    6·1 answer
  • A runner taking part in the 200 m dash must run around the end of a track that has a circular arc with a radius of curvature of
    8·1 answer
  • A ball is thrown vertically upward with a speed of 19.0 m/s. (a) How high does it rise? m (b) How long does it take to reach its
    13·2 answers
  • Which statement describes the relationship of voltage and current?
    7·2 answers
  • What does the narrator mean when he says that energy is “as old as time itsself “
    10·1 answer
  • When a resistor with resistance R is connected to a 1.50-V flashlight battery, the resistor consumes 0.0625 W of electrical powe
    9·1 answer
  • A 15.2 kg mass has a gravitational potential energy of -342 J. How high from the ground is it? Group of answer choices GPE canno
    11·1 answer
  • . Which pair of concurrent forces could produce
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!