Answer:
The question is incomplete. Here is the complete question:
A Blu-ray disc is approximately 8 centimeters in diameter. The drive motor of the Blu-ray player is able to rotate up to 10,000 revolutions per minute, depending on what track is being read. (a) Find the maximum angular speed (in radians per second) of a Blu-ray disc as it rotates. (b) Find the maximum linear speed (in meters per second) of a point on the outermost track as the disc rotates.
Answer:
(a) 1047.2 rad/sec
(b) 41.9 m/s
Explanation: Please see the attachments below
Answer:
Work done, W = 6153.31 Joules
Explanation:
It is given that,
Weight of piano, W = F = 7382 N
It is pushed 2.16 meters friction less plank
The angle with horizontal, 
When the piano slide up plank at a slow constant rate. The y component of force is taken into consideration. The net force acting on it is given by :

Work done is given by :



W = 6153.31 Joules
So, the work done in sliding the piano up the plank is 6153.31 Joules. Hence, this is the required solution.
Answer:
Distance is a scalar quantity that refers to "how much ground an object has covered" during its motion. Displacement is a vector quantity that refers to "how far out of place an object is"; it is the object's overall change in position.
Explanation:
Answer:
c: long and thin resistor.
Explanation:
The resistance of a resistor is given by:
R = ρ*L/A
where:
R = resistance
ρ = resistivity (depends on the material)
L = length of the material
A = cross-sectional area of the material
We can see that the length is on the numerator, which means that if we increase the length, then the resistance is increased.
We also can see that the cross-sectional area is on the denominator, then if we increase the area (for example, with a ticker resistor) the resistance decreases.
Then if we want to maximize the resistance, we need to have a long and thin resistor, so the correct answer is c.
Answer:
direct current
Explanation:
it has a direct path to go down to reach the specific point