<span>Since,
1000 grams of water = 1000 mL of water</span><span>
So,
At any of the given temperature:
</span>1000 mL = 10 x 100 mL
<span>
moles of NH4Cl = 53.5/53.49
= 1.0 m
= 1.0 mol/Kg
Delta T = 2 x 1.86 x 1.0
= 3.72 c
= - 3.72 °C</span>
Answer:
Mass = 4.6 g
Explanation:
Given data:
Number of molecules of sucrose = 8.1 ×10²¹ molecules
Mass of sucrose = ?
Solution:
First of all we will calculate the number of moles by using Avogadro number.
1 mole × 8.1 ×10²¹ molecules / 6.022×10²³ molecules
1.35 × 10⁻² mol
Mass of sucrose:
Mass = number of moles × molar mass
Molar mass = 342.3 g/mol
Mass = 1.35 × 10⁻² mol ×342.3 g/mol
Mass = 462.1 × 10⁻² g
Mass = 4.6 g
The answer is b. radon-222. The alpha decay means that it will emit an alpha particle when decays. The alpha particle has two protons and two neutrons. So Radium(88) minus two protons will become Radon(86). And the atomic mass will become 226-4=222.
Explanation:
The number of nitrogen atoms in one mole of nitrogen gas are <em><u>6.02214179×1023 nitrogen </u></em><em><u>atoms</u></em><em><u>.</u></em><em><u> </u></em>
<em>Hope this helps... </em>
Answer:
81.04°C
Explanation:
Heat loss by water = Heat gained by Aluminum
Heat loss by water;
H = MCΔT
ΔT = 100 - T2
M = 580g
c = 4.2
H = 580 * 4.2 (100 - T2)
H = 243600 - 2436T2
Heat ganed by Aluminium
H = MCΔT
ΔT = T2 - 24
M = 900g
c = 0.9
H = 900 * 0.9 (T2 - 24)
H = 810 T2 - 19440
243600 - 2436T2 = 810 T2 - 19440
243600 + 19440 = 810 T2 + 2436T2
263040 = 3246 T2
T2 = 81.04°C
Assumption;
Assume that energy diffuses throughout the pan and water so that all parts reach the same final temperature.