<h2>You input potential (stored) energy into the rubber band system when you stretched the rubber band back. Because it is an elastic system, this kind of potential energy is specifically called elastic potential energy.</h2><h2>Hope it helps..</h2>
Answer:
0.173 m.
Explanation:
The fundamental frequency of a closed pipe is given as
fc = v/4l .................. Equation 1
Where fc = fundamental frequency of a closed pipe, v = speed of sound l = length of the pipe.
Making l the subject of the equation,
l = v/4fc ................ Equation 2
also
v = 331.5×0.6T ................. Equation 3
Where T = temperature in °C, T = 18.0 °c
Substitute into equation 3
v = 331.5+0.6(18)
v = 331.5+10.8
v = 342.3 m/s.
Also given: fc = 494 Hz,
Substitute into equation 2
l = 342.3/(4×494)
l = 342.3/1976
l =0.173 m.
Hence the length of the organ pipe = 0.173 m.
i think its very hot summers
If your speed changes from 10 km/h to 6 km/h then
you have an acceleration.
Whether it's a positive or negative one completely depends
on which direction you decided to call the positive direction,
when you started considering your speed and its changes.
If you decided to call the direction in which you're traveling
the positive direction, then a decrease in your speed is a
negative acceleration.
But you could just as easily have said that you're traveling
in the negative direction. If you did that, then a decrease in
your speed would be a positive acceleration.
It's completely up to you, and how you define things.
Answer:
5 m/s
Explanation:
Here we can see there is no external force acted on a two masses when we consider the motion. If there is no external forces then momentum is conserved.
Initial momentum = Final momentum
0.5 × 10 = 1 × V
V = 5 m/s