Answer:
<em>2 m/s</em>
<em></em>
Explanation:
The electromagnetic flow-metre work on the principle of electromagnetic induction. The induced voltage is given as

where
is the induced voltage = 2.88 mV = 2.88 x 10^-3 V
is the distance between the electrodes in this field which is equivalent to the diameter of the tube = 1.2 cm = 1.2 x 10^-2 m
is the velocity of the fluid through the field = ?
is the magnetic field = 0.120 T
substituting, we have
2.88 x 10^-3 = 0.120 x 1.2 x 10^-2 x 
2.88 x 10^-3 = 1.44 x 10^-3 x 
= 2.88/1.44 = <em>2 m/s</em>
Answer:
speed cannot be used to calculate the temperature
Hi there!
We can use the following (derived) equation to solve for the final velocity given height:
vf = √2gh
We can rearrange to solve for height:
vf² = 2gh
vf²/2g = h
Plug in the given values (g = 9.81 m/s²)
(13)²/2(9.81) = 8.614 m
We can calculate time using the equation:
vf = vi + at, where:
vi = initial velocity (since dropped from rest, = 0 m/s)
a = acceleration (in this instance, due to gravity)
Plug in values:
13 = at
13/a = t
13/9.81 = 1.325 sec
<span>Th find the average speed of a trip we need to dived the total distance by the total time.
Let's find the total distance d.
d = (300 mi/h)(2.00 h) + 750 miles
d = 600 miles + 750 miles
d = 1350 miles
The total distance is 1350 miles
Let's find the total time t.
t = 2.00 hours + (750 mi / 250 mi/h)
t = 2.00 hours + 3.00 hours
t = 5.00 hours
The total time of the trip is 5.00 hours.
We can find the average speed.
d / t = 1350 miles / 5.00 hours
d / t = 270 miles/ hour
The average speed of the trip is 270 mi/h
(Note that the direction does not matter when we find the average speed.)</span>
<span>The multiple reflection of a single sound wave is echo</span>