Unless if all forces cancel each other out , the object will no longer be in equilibrium
Answer:

Explanation:
The capacitance of a parallel plate capacitor is given by:
(1)
where
is the vacuum permittivity
A is the area of the plates
d is the separation between the plates
The charge stored on the capacitor is given by
(2)
where C is the capacitance and V is the voltage across the capacitor.
The displacement current in the capacitor is given by
(3)
where t is the time elapsed
Substituting (1) and (2) into (3), we find an expression for the displacement current:

where we have



Substituting into the equation, we find

Answer:
106.03 meters
Explanation:
The height is given by the formula for motion under the influence of gravity.
h = -4.9t^2 +162.7
Height is 0 when ...
0 = -4.9t^2 +162.7
4.9t^2 = 162.7
t^2 = 162.7/4.9
t = √(162.7/4.9)
The horizontal distance traveled in that time is ...
(18.4 m/s)√(162.7/4.9) s ≈ 106.03 m
The object will strike the ground about 106.03 meters from the base of the cliff.
Yes
Explanation:
One can pick up a nail using the curved part of the horseshoe magnet farthest from the poles.
A horse shoe magnet has magnetic fields all around it.
- In the presence of magnetic force fields, any magnetic object will be attracted to it.
- This is the case with any magnet.
- A magnet is any object with magnetic fields all around it.
- This field causes attraction to any magnetic objects especially metals.
learn more:
Electromagnet brainly.com/question/2191993
#learnwithBrainly
The tension in the supporting cable when the cab originally moves downward is 18422.4 N
What is tension?
Tension is described as the pulling force by the means of a three-dimensional object.
Tension might also be described as the action-reaction pair of forces acting at each end of said elements.
Here,
m =combined mass = 1600 kg
s = Displacement of the elevator = 42 m
g = Acceleration due to gravity = 9.81 m/s²
u = Initial velocity = 12 m/s
v = Final velocity = 0
According to the equation of motion:

0 - 12^2 = 2*a*42
a = - 144 / 84
a = - 1.714 m/s^2
Now let's write the equation of the forces acting on the elevator. Taking upward as positive direction:
T-mg = ma
T = m(g-a)
T = 1600 ( 9.8-(-1.74))
T=18422.4 N
Hence,
The tension in the supporting cable when the cab, originally moving downward is 18422.4 N
Learn more about tension here:
<u>brainly.com/question/13772148</u>
#SPJ4