1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Lemur [1.5K]
3 years ago
9

Eac of the two Straight Parallel Lines Each of two very long, straight, parallel lines carries a positive charge of 24.00 m C/m.

The distance d between both lines is 4.10 m. What is the magnitude of the electric field at a point equidistant from the lines, with a distance 2d from both lines?

Physics
1 answer:
Cloud [144]3 years ago
6 0

Answer:

The magnitude of the electric field at a point equidistant from the lines is 4.08\times10^{5}\ N/C

Explanation:

Given that,

Positive charge = 24.00  μC/m

Distance = 4.10 m

We need to calculate the angle

Using formula of angle

\theta=\sin^{-1}(\dfrac{\dfrac{d}{2}}{2d})

\theta=\sin^{-1}(\dfrac{1}{4})

\theta=14.47^{\circ}

We need to calculate the magnitude of the electric field at a point equidistant from the lines

Using formula of electric field

E=\dfrac{2k\lambda}{r}\times2\cos\theat

Put the value into the formula

E=\dfrac{2\times9\times10^{9}\times24.00\times2\times10^{-6}\cos14.47}{2.05}

E=408094.00\ N/C

E=4.08\times10^{5}\ N/C

Hence, The magnitude of the electric field at a point equidistant from the lines is 4.08\times10^{5}\ N/C

You might be interested in
A motorcycle is stopped at a traffic light. When the light turns green, the motorcycle accelerates to a speed of 91 km/h over a
zimovet [89]

Given :

Initial speed , u = 0 m/s .

Final speed , v = 91 km/h = 25.28 m/s .

To Find :

a) Average acceleration .

b ) Assuming the motorcycle maintained a constant acceleration, how far is it from the traffic light after 3.3 s .

Solution :

a )

We know ,by equation of motion :

v^2-u^2=2as\\\\a=\dfrac{v^2-u^2}{2s}\\\\a=\dfrac{25.28^2-0^2}{2\times 47}\ m/s^2\\\\a=6.8\ m/s^2

b)

Also , by equation of motion :

s=ut+\dfrac{at^2}{2}\\\\s=0+\dfrac{6.8\times (3.3)^2}{2}\ m\\\\s=37.02\ m

Hence , this is the required solution .

6 0
3 years ago
What does a lunar eclipse and a solar eclipse have in common
liraira [26]
During either one, the sun, moon, and Earth are lined up in the same straight line. The difference is whether the moon or the Earth is the one in the "middle".
3 0
4 years ago
Which of the following is an example of projectile
jonny [76]

Answer:

The answer is choice A.

Explanation:

Assuming you are in a situation with a gravitational field. You can divide the motion of the bullet into two components. One horizontal and the other in the vertical.

7 0
3 years ago
How do scientists use the Doppler effect to understand the universe?
professor190 [17]
There's a very subtle thing going on here, one that could blow your mind.

Wherever we look in the universe, no matter what direction we look,
we see the light from distant galaxies arriving at our telescopes with
longer wavelengths than the light SHOULD have.

The only way we know of right now that can cause light waves to get
longer after they leave the source is motion of the source away from
the observer. The lengthening of the waves on account of that motion
is called the Doppler effect.  (The answer to the question is choice-c.)

But that may not be the only way that light waves can get stretched.  It's
the only way we know of so far, and so we say that the distant galaxies
are all moving away from us. 

From that, we say the whole universe is expanding, and that right there is
one of the strongest observations that we explain with the Big Bang theory
of creation.

Now:  If ... say tomorrow ... a competent Physicist discovers another way
for light waves to get stretched after they leave the source, then the whole
"expanding universe" idea is out the window, and probably the Big Bang
theory along with it !


Now that our mind has been blown, come back down to Earth with me,
and I'll give you something else to think about:

It's true that when we look at distant galaxies, we do see their light
arriving in our telescopes with longer wavelengths than it should have.
And then we use the Doppler effect to calculate how fast that galaxy
is moving away from us.  That's all true.  Astronomers are doing it
every day.                                   I mean every night.

So here's the question for you to think about ... maybe even READ about:

When the light from a distant galaxy pours into our telescope, and we
look at it, and we measure its wavelength, and we find that the wavelength
is longer than it should be ... how do we know what it should be ? ? ?
6 0
3 years ago
Read 2 more answers
A spherical shell of radius 9.0 cm carries a uniform surface charge density σ= 9.0 nC/m2. The electric field at r= 9.1 cm is app
maria [59]

Answer:

995.12 N/C

Explanation:

R = 9 cm = 0.09 m

σ = 9 nC/m^2 = 9 x 10^-9 C/m^2

r = 9.1 cm = 0.091 m

q = σ x 4π R² = 9 x 10^-9 x 4 x 3.14 x 0.09 x 0.09 = 9.156 x 10^-10 C

E = kq / r^2

E = ( 9 x 10^9 x 9.156 x 10^-10) / (0.091 x 0.091)

E = 995.12 N/C

8 0
3 years ago
Other questions:
  • A weightlifter lifts a 13.0-kg barbel from the ground an moves it a distance of 1.3 meters. What is the work se does on the barb
    9·1 answer
  • A traditional set of cycling rollers has two identical, parallel cylinders in the rear of the device that the rear tire of the b
    9·1 answer
  • A slingshot fires a pebble from the top of a building at a speed of 14.7 m/s. The building is 36.0 m tall. Ignoring air resistan
    9·1 answer
  • An electron starts with a speed of 5.50×105 m/s . It moves in a region with an electric field. Some time later the electron has
    13·1 answer
  • You are standing on a log and a friend is trying to knock
    12·1 answer
  • Four resistors of 12, 3.0, 5.0, and 4.0 Ω are connected in parallel. A 12-V battery is connected to the combination. What is the
    9·1 answer
  • Please select the word from the list that best fits the definition
    8·2 answers
  • These 2 processes cause watersheds to change.
    8·2 answers
  • The movement of crustal plates is best described as a:
    10·2 answers
  • A particle with charge Q and mass M has instantaneous speed u1 when it is at a position where the electric potential is V1. At a
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!