The path that Gloria follows when she jumped is a path of parabola.
The equation of the parabola that describes the path of her jump is 
The given parameters are:


<em>Assume she starts from the origin (0,0)</em>
The midpoint would be:



So, the vertex of the parabola is:

Express properly as:

A point on the graph would be:

The equation of a parabola is calculated using:

Substitute
in 

Substitute
in 


Collect like terms

Solve for a


Simplify

Substitute
in 

Hence, the equation of the parabola that describes the path of her jump is 
See attachment for the graph
Read more about equations of parabola at:
brainly.com/question/4074088
For this case we must find the product of the following expression:
![\sqrt [3] {5} * \sqrt {2}](https://tex.z-dn.net/?f=%5Csqrt%20%5B3%5D%20%7B5%7D%20%2A%20%5Csqrt%20%7B2%7D)
By definition of properties of powers and roots we have:
![\sqrt [n] {a ^ m} = a ^ {\frac {m} {n}}](https://tex.z-dn.net/?f=%5Csqrt%20%5Bn%5D%20%7Ba%20%5E%20m%7D%20%3D%20a%20%5E%20%7B%5Cfrac%20%7Bm%7D%20%7Bn%7D%7D)
We rewrite the expression using the lowest common index of 6, then:

We rewrite the terms in an equivalent way:

We rewrite the expression using the property mentioned:
![\sqrt [6] {5 ^ 2} * \sqrt [6] {2 ^ 3} =](https://tex.z-dn.net/?f=%5Csqrt%20%5B6%5D%20%7B5%20%5E%202%7D%20%2A%20%5Csqrt%20%5B6%5D%20%7B2%20%5E%203%7D%20%3D)
We combine using the product rule for radicals:
![\sqrt [n] {a} * \sqrt [n] {b} = \sqrt [n] {ab}](https://tex.z-dn.net/?f=%5Csqrt%20%5Bn%5D%20%7Ba%7D%20%2A%20%5Csqrt%20%5Bn%5D%20%7Bb%7D%20%3D%20%5Csqrt%20%5Bn%5D%20%7Bab%7D)
So:
![\sqrt [6] {5 ^ 2 * 2 ^ 3} =\\\sqrt [6] {25 * 8} =\\\sqrt[6]{200}](https://tex.z-dn.net/?f=%5Csqrt%20%5B6%5D%20%7B5%20%5E%202%20%2A%202%20%5E%203%7D%20%3D%5C%5C%5Csqrt%20%5B6%5D%20%7B25%20%2A%208%7D%20%3D%5C%5C%5Csqrt%5B6%5D%7B200%7D)
ANswer:
Option b
Answer is
0-4-9
start from zero then count
Answer:
3
Step-by-step explanation:
Because there was a pay rise, we can write the equation as x+0.04x = 24.492 and solve for x.
x+0.04x = 24.492
1.04x = 24.492
x=23.55
His original pay was £23.55