1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Nastasia [14]
3 years ago
15

Missing angle trig (inverse) 10th geometry HELP ASAP

Mathematics
1 answer:
USPshnik [31]3 years ago
7 0

Answer:

33. B

34. D

35. D

36. A

Step-by-step explanation:

All these questions require is a calculator :). For question 35, all you want to put in is arccos(0.8192) and make sure your calculator is in degree mode. For 36, all you want to put in is arctan(0.3839). For 34, all you want to put in is arcsin(0.6018). For 33, all you want to put in is arcsin(0.6561).

You might be interested in
What value of n makes the equation true?
dybincka [34]

1(2x^9y^n) (4x²y^10)-8x^11 y^20

1

2

10

30

(2x^9y^n) (4x²y^10)-8x^11 y^20                        i say the answer 1 or 10

1

2

10

30

(2x^9y^n) (4x²y^10)-8x^11 y^20

1

2

10

30

(2x^9y^n) (4x²y^10)-8x^11 y^20

1

2

10

30

(2x^9y^n) (4x²y^10)-8x^11 y^20

1

2

10

30

(2x^9y^n) (4x²y^10)-8x^11 y^20

1

2

10

30

(2x^9y^n) (4x²y^10)-8x^11 y^20

1

2

10

30

(2x^9y^n) (4x²y^10)-8x^11 y^20

1

2

10

30

(2x^9y^n) (4x²y^10)-8x^11 y^20

1

2

10

30

(2x^9y^n) (4x²y^10)-8x^11 y^20

1

2

10

30

(2x^9y^n) (4x²y^10)-8x^11 y^20

1

2

10

30

(2x^9y^n) (4x²y^10)-8x^11 y^20

1

2

10

30

(2x^9y^n) (4x²y^10)-8x^11 y^20

1

2

10

30

(2x^9y^n) (4x²y^10)-8x^11 y^20

1

2

10

30

(2x^9y^n) (4x²y^10)-8x^11 y^20

1

2

10

30

(2x^9y^n) (4x²y^10)-8x^11 y^20

1

2

10

30

(2x^9y^n) (4x²y^10)-8x^11 y^20

1

2

10

30

(2x^9y^n) (4x²y^10)-8x^11 y^20

1

2

10

30

(2x^9y^n) (4x²y^10)-8x^11 y^20

1

2

10

30

(2x^9y^n) (4x²y^10)-8x^11 y^20

1

2

10

30

(2x^9y^n) (4x²y^10)-8x^11 y^20

1

2

10

30

4 0
1 year ago
If anyone knows about definite integrals for calculus then please I request help! I
kicyunya [14]

Answer:

\displaystyle \int\limits^9_5 {\frac{1}{x^3}e^\big{4x^{-2}}} \, dx = \frac{1}{8} \bigg( e^\Big{\frac{4}{25}} - e^\Big{\frac{4}{81}} \bigg)

General Formulas and Concepts:

<u>Calculus</u>

Differentiation

  • Derivatives
  • Derivative Notation

Derivative Property [Multiplied Constant]:                                                           \displaystyle \frac{d}{dx} [cf(x)] = c \cdot f'(x)

Basic Power Rule:

  1. f(x) = cxⁿ
  2. f’(x) = c·nxⁿ⁻¹

Integration

  • Integrals

Integration Rule [Fundamental Theorem of Calculus 1]:                                     \displaystyle \int\limits^b_a {f(x)} \, dx = F(b) - F(a)

Integration Property [Multiplied Constant]:                                                         \displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx

U-Substitution

Step-by-step explanation:

<u>Step 1: Define</u>

<em>Identify</em>

\displaystyle \int\limits^9_5 {\frac{1}{x^3}e^\big{4x^{-2}}} \, dx

<u>Step 2: Integrate Pt. 1</u>

<em>Identify variables for u-substitution.</em>

  1. Set <em>u</em>:                                                                                                             \displaystyle u = 4x^{-2}
  2. [<em>u</em>] Differentiate [Basic Power Rule, Derivative Properties]:                       \displaystyle du = \frac{-8}{x^3} \ dx
  3. [Bounds] Switch:                                                                                           \displaystyle \left \{ {{x = 9 ,\ u = 4(9)^{-2} = \frac{4}{81}} \atop {x = 5 ,\ u = 4(5)^{-2} = \frac{4}{25}}} \right.

<u>Step 3: Integrate Pt. 2</u>

  1. [Integral] Rewrite [Integration Property - Multiplied Constant]:                 \displaystyle \int\limits^9_5 {\frac{1}{x^3}e^\big{4x^{-2}}} \, dx = \frac{-1}{8}\int\limits^9_5 {\frac{-8}{x^3}e^\big{4x^{-2}}} \, dx
  2. [Integral] U-Substitution:                                                                              \displaystyle \int\limits^9_5 {\frac{1}{x^3}e^\big{4x^{-2}}} \, dx = \frac{-1}{8}\int\limits^{\frac{4}{81}}_{\frac{4}{25}} {e^\big{u}} \, du
  3. [Integral] Exponential Integration:                                                               \displaystyle \int\limits^9_5 {\frac{1}{x^3}e^\big{4x^{-2}}} \, dx = \frac{-1}{8}(e^\big{u}) \bigg| \limits^{\frac{4}{81}}_{\frac{4}{25}}
  4. Evaluate [Integration Rule - Fundamental Theorem of Calculus 1]:           \displaystyle \int\limits^9_5 {\frac{1}{x^3}e^\big{4x^{-2}}} \, dx = \frac{-1}{8} \bigg( e^\Big{\frac{4}{81}} - e^\Big{\frac{4}{25}} \bigg)
  5. Simplify:                                                                                                         \displaystyle \int\limits^9_5 {\frac{1}{x^3}e^\big{4x^{-2}}} \, dx = \frac{1}{8} \bigg( e^\Big{\frac{4}{25}} - e^\Big{\frac{4}{81}} \bigg)

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Integration

4 0
2 years ago
_______________________<br> can someone help me solve this question? Thank you.
Zinaida [17]

Answer:

-60

Step-by-step explanation:

Factor the problem out using FOIL.

The end result is: −60x^{2}−84x+9

The value of coefficent a (the number in front of the x^2) is -60.

8 0
3 years ago
If (fx)=5x, what is f^-1(x)
zysi [14]

Answer:

x/5

Step-by-step explanation:

To get the inverse function you need to leave the x alone and then switch variables ( f(x) = y)

f(x) = 5x

y = 5x

y/5 = x

Now that x is alone you switch the x for y and the y for x and you get:

x/5 = y

And this new y is the inverse function of f(x) ( f^-1(x))

f^-1(x) = x/5

6 0
3 years ago
Two lines intersecting at a right angle ?
MAXImum [283]

Answer:

are perpendicular

5 0
3 years ago
Read 2 more answers
Other questions:
  • What is the slope and y intercept of 4×+2y=-6
    8·1 answer
  • 2y/(z-y)x=4y solve for x
    11·1 answer
  • Use the fraction strips to answer. Choose the sign that goes between the two fractions.
    10·1 answer
  • SOMEONE JUST PLEASE ANSWER THIS ASAP FOR BRAINLIEST!!!
    14·2 answers
  • 6(x + 4) = 36 please someone help me
    8·2 answers
  • Three brothers bought a pack of 24 baseball cards to share. Can they each get the same number of cards. How do you know?
    13·1 answer
  • What is the fraction form of 0.73
    12·2 answers
  • There are 6,000 hotel rooms in Sean's city. During a convention, 4,200 of the hotel rooms were occupied. What percentage of the
    14·1 answer
  • If Xavier rolls a number cube 90 times, how many times can he expect it to land on a number greater than 4? *
    15·1 answer
  • A supplier sold a scanner machine for Rs 41,400 with 15% VAT after allowing 10% discount on it's marked price and gained 20%. By
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!