Answer:
Step-by-step explanation:
First, look at y = log x. The domain is (0, infinity). The graph never touches the vertical axis, but is always to the right of it. A real zero occurs at x = 1, as log 1 = 0 => (1, 0). This point is also the x-intercept of y = log x.
Then look at y = log to the base 4 of x. The domain is (0, infinity). The graph never touches the vertical axis, but is always to the right of it. Again, a real zero occurs at x = 1, as log to the base 4 of 1 = 0 => (1, 0).
Finally, look at y=log to the base 4 of (x-2). The graph is the same as that of y = log to the base 4 of x, EXCEPT that the whole graph is translated 2 units to the right. Thus, the graph crosses the x-axis at (3, 0), which is also the x-intercept.
Answer:
See below in bold.
Step-by-step explanation:
For the fair coin Prob(head) = 1/2 and Prob(Tail) = 1/2.
For the biased coin it is Prob(head) = 2/3 and Prob(Tail) = 1/3.
a) Prob(2 heads) = 1/2 * 2/3 = 1/3.
b) Prob(2 tails) = 1/2 * 1/3 = 1/6.
c) Prob(1 head ) = Prob(H T or T H) = 1/2 * 1/3 + 1/2 * 2/3) = 1/6+1/3 = 1/2.
d) Prob (at least one head) = prob (HH or TH or HT) = 1/3 + 1/2 =<em> </em>5/6.
The y-intercept is the y value where the blue line crosses the Y axis which is the vertical black line.
The line crosses at the number 4, so the y-intercept is 4
Answer: D. 4