The medical students m>12,the temperature of students s=>25, and the ideal candidate c=<5
1 % of 330 is 3.3 and 3.3x8=26.4 so 26.4+330=356.4
356.4
1.) B
because it says the person buys a ski for 350. He puts down $110 which means to subtract. Now he got a discount which also means to subtract. Then it told that he gave 1/2 them money to his mother. So that too means to subtract.
2.) 2+5n
because it says 2 plus 5 times a number. So 2+5×n
The pH of the weak acid is 3.21
Butyric acid is known as a weak acid, we need the concentration of [H+] formula of weak acid which is given by this equation :
![[H^{+}]=\sqrt{Ka . Ma}](https://tex.z-dn.net/?f=%5BH%5E%7B%2B%7D%5D%3D%5Csqrt%7BKa%20.%20Ma%7D)
where [H+] is the concentration of ion H+, Ka is the weak acid ionization constant, and Ma is the acid concentration.
Since we know the concentration of H+, the pH can be calculated by using
pH = -log[H+]
From question above, we know that :
Ma = 0.0250M
Ka = 1.5 x 10¯⁵
By using the equation, we can determine the concentration of [H+]
[H+] = √(Ka . Ma)
[H+] = √(1.5 x 10¯⁵ . 0.0250)
[H+] = 6.12 x 10¯⁴ M
Substituting the value of [H+] to get the pH
pH = -log[H+]
pH = -log(6.12 x 10¯⁴)
pH = 3.21
Hence, the pH of the weak acid c3h7cooh is 3.21
Find more on pH at: brainly.com/question/14466719
#SPJ4
The system of equations when been placed in a matrix yields
![\left[\begin{array}{ccc}650&-1\\120&1\end{array}\right]\left[\begin{array}{ccc}x\\y\end{array}\right] =\left[\begin{array}{ccc}-175\\25080\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D650%26-1%5C%5C120%261%5Cend%7Barray%7D%5Cright%5D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Dx%5C%5Cy%5Cend%7Barray%7D%5Cright%5D%20%20%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-175%5C%5C25080%5Cend%7Barray%7D%5Cright%5D)
<h3>What is an
equation?</h3>
An equation is an expression that shows the relationship between two or more variables and numbers.
Given the equation:
y = 650x + 175 and;
y = 25080 - 120x
Rearranging the equations gives:
650x - y = -175 and;
120x + y = 25080
Placing the equations in a matrix gives:
![\left[\begin{array}{ccc}650&-1\\120&1\end{array}\right]\left[\begin{array}{ccc}x\\y\end{array}\right] =\left[\begin{array}{ccc}-175\\25080\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D650%26-1%5C%5C120%261%5Cend%7Barray%7D%5Cright%5D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Dx%5C%5Cy%5Cend%7Barray%7D%5Cright%5D%20%20%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-175%5C%5C25080%5Cend%7Barray%7D%5Cright%5D)
The system of equations when been placed in a matrix yields
![\left[\begin{array}{ccc}650&-1\\120&1\end{array}\right]\left[\begin{array}{ccc}x\\y\end{array}\right] =\left[\begin{array}{ccc}-175\\25080\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D650%26-1%5C%5C120%261%5Cend%7Barray%7D%5Cright%5D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Dx%5C%5Cy%5Cend%7Barray%7D%5Cright%5D%20%20%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-175%5C%5C25080%5Cend%7Barray%7D%5Cright%5D)
Find out more on equation at: brainly.com/question/2972832
#SPJ1