Answer: "The reactants are higher in energy than the products"
Explanation:
The exothermic reactions are characterized by the release of heat to the surroundings. The reactants lose heat that is delivered to the surroundings which implies that the products will be lower in energy than the reactants.
The hills that you can see in a reaction energy diagram are not related with the final change of energy. The hills are an indication of the activation energy needed to start the reaction, but they do not measure the change of energy from the products to the reactants.
The enthalpy that is a state variable that identifies the content of heat. Then the change of enthalpy for the exothermic reactions is negative, meaning that the energy of the products is lower than the energy of the reactants.
In order to balance an equation, we apply the principle of conservation of mass, which states that mass can neither be created nor destroyed. Therefore, the mass of an element before and after a reaction remains constant. Here, the balanced equation becomes:
4Al + 3O₂ → 2Al₂O₃
The coefficients are 4, 3 and 2.
Answer:
2
Explanation:
Each orbital can hold two electrons. One spin-up and one spin-down.
Answer:
Cu(s) + 2AgNO3(aq)→Cu(NO3)2(aq)+2Ag(s)
This chemical equation means:
One mole of solid copper plus two moles of aqueous silver nitrate produce one mole of copper(II) nitrate plus two moles of solid silver.
This is a single replacement reaction in which the metal copper replaces the metal silver.
Answer:
Hydrofluoric acid.
Explanation:
To know which of the acid is the strongest, let us determine the pka of each acid. This is illustrated below:
1. Acetic acid
Ka = 1.8x10^-5
pKa =..?
pKa = –logKa
pKa = –Log 1.8x10^-5
pKa = 4.74
2. Benzoic acid
Ka = 6.5x10^-5
pKa =..?
pKa = –logKa
pKa = –Log 6.5x10^-5
pKa = 4.18
3. Hydrofluoric acid.
Ka = 6.8x10^-4
pKa =..?
pKa = –logKa
pKa = –Log 6.8x10^-4
pKa = 3.17
4. Hypochlorous acid
Ka = 3.0x10^-8
pKa =..?
pKa = –logKa
pKa = –Log 3.0x10^-8
pKa = 7.52
Note: the smaller the pKa value, the stronger the acid.
The pka of the various acids as calculated above is given below:
Acid >>>>>>>>>>>>>>>>>> pKa
1. Acetic acid >>>>>>>>>> 4.74
2. Benzoic acid >>>>>>>> 4.18
3. Hydrofluoric acid >>>> 3.17
4. Hypochlorous acid >> 7.52
From the above illustration, we can see that hydrofluoric acid has the lowest pKa value. Therefore, hydrofluoric acid is the strongest among them.