PH = pKa + log
![\frac{[base]}{[Acid]}](https://tex.z-dn.net/?f=%20%5Cfrac%7B%5Bbase%5D%7D%7B%5BAcid%5D%7D%20)
Acid is HC₂H₃O₂ and conjugate base is KC₂H₃O₂,
pKa = - log Ka = - log (1.8 x 10⁻⁵) = 4.74
so pH = 4.74 + log (0.2/0.2) = 4.74
This is called maximum buffer capacity (when acid conc. and base conc. are equal) the pH = pKa in this case
Answer:
It will take
to exhaust the supply
Explanation:
We have to apply unitary method to solve this problem.
Divide total petroleum reserve by petroleum consumption in each year to calculate estimated time.
Presently,
joules of petroleum are being consumed per year.
Hence, applying unitary method,
joules of petroleum can be consumed in 
1. Triassic
2. eon > era > period
3. The scientists study fossils and rock layers to find major changes.
Answer:
Bromine is a chemical element with the symbol Br and atomic number 35. It is the third-lightest halogen, and is a fuming red-brown liquid at room temperature that evaporates readily to form a similarly colored gas.
Answer:
4-chloro-4-methyl-cyclohexene.
Explanation:
Hello,
On the attached picture you will find the chemical reaction forming the required product, 4-chloro-4-methyl-cyclohexene. In this case, according to the Markovnicov’s rule, it is more likely for the chlorine to be substituted at the carbon containing the methyl radical in addition to the hydrogen to the next carbon to break the double bond and yield the presented product.
Best regards.