Answer:
2Zn + 2HCI ➡️ ZnCI2 + H2
LHS of equation
Z = 2
H = 2
Cl = 2
RHS of equation
Zn = 1
Cl =2
H =2
as Zn is not equal in number of atoms on both sides of the equation, the equation does not obey the law of conservation of mass
Explanation:
the law of conservation mass states that the mass of an isolated system cannot be created nor destroyed by any chemical reaction or physical transformation. thus, there must be an equal number of atoms of an element present on both sides of the equation.
5.00 x 1011/s = 5.05500kilohertz
Answer:
The correct option is;
Placing one drop of food coloring in a cup with 60 ml of water at 10°, placing one drop of food coloring in a second cup with 60 ml of water at 40°C
Explanation:
The experimental setup that would allow the student investigate the connection between kinetic energy and temperature should be made up of the following characteristics
1) The constant terms for the experiment should be defined, which in this case are
a) The volume of the water which is 60 ml in both subjects of the experiment
2) The definition of the variable that produces the effect that is being monitored, which is the use of the different temperatures in the two experimental subjects
3)The environmental limits of the experiment, which is the water and the food coloring used
Answer:
The four resonance structures of the phenoxide ion are shown in the image attached
The conjugate base of cyclohexanol has only one resonance contributor, while
the conjugate base of phenol has four resonance contributors.
Explanation:
In organic chemistry, it is known that structures are more stable if they possess more resonance contributors. The greater the number of contributing canonical structures, the more stable the organic specie. Since the phenoxide ion has four contributing canonical structures, it is quite much more stable than cyclohexanol having only one contributing structure to its conjugate base. Hence the PKa(acid dissociation constant) of phenol is lesser than that of cyclohexanol. The conjugate base of phenol is stabilized by resonance.