Answer:
The energies corresponding to each of the allowed orbitals are called energy levels.
Explanation:
A scientist known as Niels Bohr put forward that electrons in an atom covers some permitted orbitals with a specific energy. In other words, the energy of an electron in an atom is not continuous, but 'quantized.' The energies corresponding to each of the allowed orbitals are called energy levels.

The electrostatic potential energy, U, of one point charge q at position d in the presence of an electric field E is defined as the negative of the work W done by the electrostatic force to bring it from the reference position d to that position

Thus, to double the electric potential energy U we need to reduce the distance of separation by half (1/2) because they are inversely proportion
The 26th is Fe(iron) and the 50th is Sn(tin)
I'm actually going ahead in the book (DC Circuits) so this isn't really homework but I figured the tag was appropriate....the name of the chapter is Ohm's Law and Watt's Law.
<span>Problem: Calculate the power dissipated in the load resistor, R, for each of the circuits.Circuit (a): V = 10V; I = 100mA; R = ?; Since I know
V and
I use formula
P = IV: P = IV = (100mA)(10V) = 1 W.</span>
The next question is what I'm not sure about:
Question: What is the power in the circuit (a) above if the voltage is doubled? (Hint: Consider the effect on current).
What I did initially was: P = IV = (100mA)(2V) = 2 W
But then I looked at the answer and it said 4 W, then I looked at the Hint again. Then I remembered in the book early on it said "If the voltage increases across a resistor, current will increase."
So question is: When solving problems I have to increase (or decrease) current (I) every time voltage (V) is increased (decreased) in a problem, right? How about the other way around, when increasing current (I), you need to increase voltage (V). I'm pretty sure that's how they got 4 W, but want to make sure before I head to the next section of the book.
P = IV = (200mA)(2V) = 4 W