Answer:
Double the current
Explanation:
The energy delivered by the heater is related to the current by the following relation:
E= 
let R * t = k ( ∴ R and t both are constant)
so E= k 
Now let:
E2= k I₂^2
E2= 4E
⇒ k I₂^2= 4* k 
Cancel same terms on both sides.
I₂^2= 4* 
taking square-root on both sides.
√I₂^2 = √4* I^2
⇒I₂= 2I
If we double the current the energy delivered each minute be 4E.
Answer:
Its graph 1
Explanation:
She started at the origin and kept riding her bike until she stopped which causes the line to go staright because she's not moving.
Answer:
Option D (On the...............dominate) would be the right approach.
Explanation:
The Gravitational constant (G) will be:
= 
The Coulomb's law constant (K) will be:
= 
- Throughout particular, these have been determined that among 2 substances with almost the similar form of charge, the combination of electromagnetic as well as the force does seem to be usually the following:
⇒ 
- By that same argument, the electrostatic force including its planet's atmosphere would have strongly influenced the effect, as well as maybe the planet's atmosphere, would have crashed, or perhaps the earth would have shifted at a much longer exposure from one another and.
- Throughout particular, astronomical distance statutory framework that gravity seems to be predominant, whereas electrostatic forces have been generally ignored. It is quite since there are so many categories of allegations throughout the planet's atmosphere that balance out someone else's effects, there's only yet another form of momentum, because although the forces are still cumulative, as well as therefore offering to help everything hold to the universe, encouraging the universe just to rotate across the sun.
The latter three choices aren't connected to either the situation mentioned in the clarification segment elsewhere here.
Answer:
6.32m/s
Explanation:
note:Now these calculations are based in the fact that acc. due to gravity is 10m/s²
okay so I'm thinking you think the speed of a body depends on the mass of the body also,umh... well it doesn't at all!
when two bodies of different masses fall from the same height,they fall at the same time( this is just to say)
now enough of the talking let solve....
so the ball was dropped .ie from rest to the ground through a distance of 2m,
the formula for calculating the distance if a body moving in a straight line is given by:
S=ut + ½at² where u is initial velocity, a is acceleration ( of the body or due to gravity, but since its falling freely under the influence of gravity its " we use the acceleration due to gravity ,which is 10m/s²) and t is the time taken to cover the distance.
from our question the ball was dropped from rest thus its u is 0 therefore we use this equation to find the time it took to touch ground (S=½at²)
solving ....
we get t to be 0.632s
to find the speed we substitute t in the equation below:
V=u+at ,but since u=0
V=at =10•0.632=6.32m/s
therefore the speed the body uses to strike the ground is 6.32m/s
<span>By pythagorean theorem then, the vertical side of the right triangle must be 12.
Then if x is the angle between the horizontal side and the hypotenuse, sin(x) = 12/13 but also the anser should be in this sentences.
</span>