Refer to the figure shown below.
Let m₁ and m₂ e the two masses.
Let a = the acceleration.
Let T = tension over the frictionless pulley.
Write the equations of motion.
m₂g - T = m₂a (1)
T - m₁g = m₁a (2)
Add equations (1) and (2).
m₂g - T + T - m₁g = (m₁ + m₂)a
(m₂ - m₁)g = (m₁ + m₂)a
Divide through by m₁.
(m₂/m₁ - 1)g = (1 + m₂/m₁)a
Define r = m₂/m₁ as the ratio of the two masses. Then
(r - 1)g = (1 +r)a
r(g-a) = a + g
r = (g - a)/(g + a)
With = 2 ft/s from rest, the acceleration is
a = 2/32.2 = 0.062 ft/s²
Therefore
r = (32.2 - 0.062)/(32.2 + 0.062) = 0.9962
Answer:
The ratio of masses is 0.9962 (heavier mass divided by the lighter mass).
Answer:
a) y = 2.4 x 10⁻³ m = 0.24 cm
b) y = 3.2 x 10⁻³ m = 0.32 cm
Explanation:
The formula of Young's Double Slit experiment will be used here:

where,
y = distance between dark spots = ?
λ = wavelength
L = distance of screen = 2 m
d = slit width = 4 x 10⁻⁴ m
a) FOR λ = 480 nm = 4.8 x 10⁻⁷ m:

<u>y = 2.4 x 10⁻³ m = 0.24 cm</u>
<u></u>
a) FOR λ = 640 nm = 6.4 x 10⁻⁷ m:

<u>y = 3.2 x 10⁻³ m = 0.32 cm</u>
Sun fives off both of them
Kinectic Energy=1/2(mass)(velocity)^2 so 1.2=1/2(.0012)(position/2) so it travels 4000 m. Not sure how it is 293.2 ft
Resitance (R)= 10 Ohm
Potential difference (V) = 9V
V= IR
I= V/R
I= 9/10
I= 0.9 Ampere
Therefore 0.9 Ampere of current is flowing through the circuit.