1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Firdavs [7]
3 years ago
10

The local citizen's group sold raffle tickets and made $430. This was3 times the amount of money that the winner received. Write

an equation that could be used to find the amount, w, received by the winner.
Mathematics
1 answer:
elena55 [62]3 years ago
8 0
W=$430÷3

W=$143.33

To find the naswer just divide the total made from the raffle tickets($430) then divide it by 3 to get the the answer/thee amount of money the winner gets, which is $143.33.
You might be interested in
Consider the following function. f(x) = 16 − x2/3 Find f(−64) and f(64). f(−64) = f(64) = Find all values c in (−64, 64) such th
VARVARA [1.3K]

Answer:

This does not contradict Rolle's Theorem, since f '(0) = 0, and 0 is in the interval (−64, 64).

Step-by-step explanation:

The given function is

f(x)=16-\frac{x^2}{3}

To find f(-64), we substitute x=-64 into the function.

f(-64)=16-\frac{(-64)^2}{3}

f(-64)=16-\frac{4096}{3}

f(-64)=-\frac{4048}{3}

To find f(64), we substitute x=64 into the function.

f(64)=16-\frac{(64)^2}{3}

f(64)=16-\frac{4096}{3}

f(64)=-\frac{4048}{3}

To find f'(c), we must first find f'(x).

f'(x)=-\frac{2x}{3}

This implies that;

f'(c)=-\frac{2c}{3}

f'(c)=0

\Rightarrow -\frac{2c}{3}=0

\Rightarrow -\frac{2c}{3}\times -\frac{3}{2}=0\times -\frac{3}{2}

c=0

For this function to satisfy the Rolle's Theorem;

It must be continuous on [-64,64].

It must be differentiable  on (-64,64).

and

f(-64)=f(64).

All the hypotheses are met, hence this does not contradict Rolle's Theorem, since f '(0) = 0, and 0 is in the interval (−64, 64) is the correct choice.

6 0
3 years ago
Read 2 more answers
WILLL GIVE A BRAINLEST FOR RIGHT ANSWER
olchik [2.2K]

Answer:

with a sample survey

6 0
4 years ago
Read 2 more answers
Find the least common multiple of: 12x^3y^2 and 15x^2y^5
allochka39001 [22]

Answer: 60x^3y^5

Step-by-step explanation:

Least Common Multiple :The least positive number that is a multiple of two or more numbers.

To find : The least common multiple of: 12x^3y^2 and 15x^2y^5.

Since, 12x^3y^2=2\times2\times3\times x^3y^2

15x^2y^5=3\times5\times x^2y^5

The least common multiple of: 12x^3y^2 and 15x^2y^5. = 2\times2\times3\times5\times x^3y^5=60x^3y^5 [take highest power of x and y ]

Hence, the least common multiple of: 12x^3y^2 and 15x^2y^5. = 60x^3y^5

3 0
3 years ago
0.3% rounded to the thousands
Andreyy89

Answer:

0.300

Step-by-step explanation:

7 0
3 years ago
Read 2 more answers
Triangle has side length 7, 10 and 12 is it a right triangle explain your reasoning
Vikentia [17]

Answer: No, because 7^2 + 10^2 is > 12^2

Step-by-step explanation: 7^2 +10^2= 49 + 100= 149 149 \neq 144

5 0
3 years ago
Other questions:
  • U help me, I'll help u
    12·2 answers
  • The two rectangular prisms are similar.
    6·2 answers
  • Sam is building a model of an antique car the scale of his model to the actual car is 1:10 his model is 16 1/2 inches long. How
    11·1 answer
  • Round the number to the nearest thousand.<br> 5,732<br> &gt;
    9·2 answers
  • Please help I have no clue what to do and need to get this done in 30 minutes
    11·1 answer
  • Evaluate and simplify the following complex fraction
    15·1 answer
  • What is the perimeter of a square if the length of one of the diagonals is 12 cm?
    8·1 answer
  • Need help on this question can someone help please and thank you!
    6·1 answer
  • Simplify . (1/c + 1/h)/(1/(c ^ 2) - 1/(r ^ 2))
    8·1 answer
  • Paul brought $24.50 to the art supply store. He bought a brush, a sketchbook, and a paint set. The brush was 1 3 as much as the
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!